Collage Bannerbild (Foto: SWR – Screenshot aus der Sendung)

Achtung! Experiment

Wenn Türme wachsen | Unterricht Sek

Stand
Autor/in
Silke Küsters

Einsatz im Unterricht der Sekundarstufe

Spitze eines Turms mit zwei Stahlbögen. (Foto: SWR/WDR – Screenshot aus der Sendung)
Kann ein Stahlturm bei Wärmeeinstrahlung "wachsen"? Bild in Detailansicht öffnen
Mit einem speziellen Messgerät wird die genaue Turmhöhe berechnet Bild in Detailansicht öffnen
Die Vorbereitungen für die Messung der Turmhöhe laufen Bild in Detailansicht öffnen

Methodisch-didaktische Hinweise / Bezug zu den Bildungsplänen

Welchen Wert hat die Information, dass ein Turm im Laufe eines Tages „wächst“ und auch wieder „kleiner“ wird? Betrachtet man den Film „Wenn Türme wachsen“, so wird man auf anschauliche Weise Zuschauer eines naturwissenschaftlichen Versuchs, der untersucht, wie sich Stahl unter Zufuhr von Wärme verhält. Ein erster Alltagsbezug ist ermöglicht, da als Beobachtungsgegenstand ein Turm ausgemessen und ausgewertet wird.

Grundsätzlich hat das naturwissenschaftliche Arbeiten mittels Experimenten im NWA-Unterricht einen hohen Stellenwert, da es der Erkenntnisgewinnung dient. Stundenfrage, Hypothesenbildung, Überprüfen in Versuchen und Formulieren von Gesetzmäßigkeiten sind feste Bestandteile dieses Vorgehens.

Der Film „Wenn Türme wachsen“ setzt an dieser Methode an. Auch er stellt die Frage, wie verhält sich Stahl, wenn seine Temperatur geändert wird und überprüft dies in einem kleinen und großen Experiment. Damit orientiert sich das Filmmaterial am Bildungsplan: Temperaturänderung und ihre Folgen werden im Physikunterricht an Realschulen in der Regel in Klasse 8 thematisiert und der Bildungsplan sieht hierbei vor, dass die Schülerinnen und Schüler Phänomene, die beispielsweise mit der Übertragung von Wärme verbunden sind, beschreiben und sie modellhaft darstellen oder in definierten Größen quantifizieren.

Betrachtet man nun die Frage nach dem Wert der Information, so lässt sich feststellen, dass sich durch den Film viele weitere Fragen stellen lassen und man außerdem nun auch nach Antworten suchen kann, weshalb folglich bei diesem Turm die beiden Stahlbögen frei von einander stehen müssen und an ihrem höchsten Punkt nicht fest miteinander verbunden sind. An diese Überlegung lassen sich weitere Beobachtungen in der Umwelt / Umgebung anknüpfen, weshalb es beispielsweise Dehnungsfugen in Brücken gibt oder wie man sich in der Technik die Längenausdehnung durch Wärme mittels Bimetallstreifen beim Bügeleisen zu Nutze macht.

Unterrichtsideen

Der Film lässt sich vielseitig einsetzen. So könnte man ihn zu Beginn der Einheit ‚Wärmelehre‘ zeigen oder aber mit den Schülern daran den Unterpunkt „Ausdehnung durch Wärme – Temperaturänderungen und ihre Folgen“ bei flüssigen, festen und gasförmigen Stoffen thematisieren, um darauf aufzubauen. Hierfür wird der Film zu Beginn des Unterpunktes gezeigt und zunächst als Versuch mit Skizze und Beobachtung festgehalten, um dann der Vermutung nachzugehen, was denn passieren würde, wenn die Stahlbögen des Turmes fest miteinander verbunden wären. In einem Lehrerdemonstrationsversuch wird mithilfe des „Bolzensprenger-Versuchs“ das Ausmaß einer festen Verbindung für den Turm deutlich gemacht.

Im Anschluss werden nun weitere Versuche zum Thema „Ausdehnung durch Wärme“ gemacht. Dies wird als Überschrift ebenso an der Tafel festgehalten und auch in Folgestunden dort noch angeschrieben, damit die weiteren Beobachtungen entsprechend gedanklich zugeordnet werden. Für die Versuchsphasen bietet sich die Arbeit in Kleingruppen mit drei bis vier Schülern an. Da mit dem Bunsenbrenner gearbeitet wird, ist auf den sicheren Umgang damit besonders zu achten. Schüler, die noch nicht damit gearbeitet haben, müssen unbedingt davor eingewiesen werden.

- In einem ersten Schritt werden nun andere Metalle darauf untersucht, ob sie sich wie der Stahl im Film bei Wärmezufuhr ausdehnen. (Arbeitsblatt 2a) Auf eine Auswertung mit Zeigern wurde bewusst verzichtet und nur auf die Verlängerung des eingespannten Drahtes abgestellt, da es hier weniger um Messwerte als um die reine Beobachtung einer Verlängerung geht.

- Um deutlich zu machen, dass diese Ausdehnung in alle Richtungen verläuft, werden auch eine Münze und anschließend eine Kugel erhitzt. (Arbeitsblatt 2a und 2b) Der Kugelversuch ist als Lehrerversuch vorgesehen, da davon auszugehen ist, dass das nötige Material nicht ausreichend für Schülerversuche vorrätig ist.
In einem weiteren Schritt werden die gemachten Beobachtungen in einem Lückentext gesichert. Da Füllwörter gegeben sind, sollten die Schüler den Text zunächst allein lösen, um ihn dann im Plenum miteinander zu besprechen. (Arbeitsblatt 2b)

Zwei Pendelspitzen in unterschiedlicher Höhe. (Foto: SWR/WDR – Screenshot aus der Sendung)
Zweiter Beweis: Vergleichsmessung mit einem Draht, der vom Turm herabhängt. Am Nachmittag ist die Drahtspitze höher - der Turm ist "gewachsen"

- Im weiteren Verlauf wird nun ein Alltagsbezug hergestellt. Dazu sammeln die Schüler zunächst selbst Alltagsbeispiele, bei denen die Volumenänderung von festen Stoffen beachtet werden muss. Mithilfe eines Schaubildes müssen sie sodann auch Rückschlüsse ziehen, weshalb gleiche Längenzunahmen zweier Stoffe von Vorteil sein könnten. Ein Beispiel hierbei könnte der Brückenbau sein, wo bei gleicher Längenausdehnung verschiedener Materialien weniger Belastung entsteht. (Arbeitsblatt 3a) In einem weiteren Schritt wird nun ein Bimetallstreifen erhitzt, um daran zu beobachten, was passiert, wenn sich zwei Stoffe nicht gleichlang ausdehnen. (Arbeitsblatt 3a)

Bewusst wird der Streifen in beide Richtungen eingespannt, um mögliche Schwerkrafterklärungsversuche auszuschließen. Denn durch das Einspannen in beide Richtungen wird deutlich, dass es immer von dem Material abhängt, das die kürzere Ausdehnung hat und in dessen Richtung sich der Bimetallstreifen daher krümmt.

- Während beim Versuch die erste Beobachtung wesentlich ist, wird nun in einem Schaubild festgehalten, was in einem Bimetallstreifen bei Erwärmung genau geschieht. Die Schüler stellen dar, dass sich die Streifen unterschiedlich lang ausdehnen und sich das Bimetall folglich in Richtung der kürzeren Ausdehnung krümmt. In einem Schülerversuch wird dann der Bimetallstreifen als Schalter in einem Stromkreis eingebaut. Anschließend werden Verwendungsbeispiele wie das Bügeleisen, der Thermostat, oder auch das Thermometer besprochen und notiert.

- Um der Teileinheit „Ausdehnung durch Temperaturerhöhung“ gerecht zu werden, werden im Anschluss zwei weitere Versuche durchgeführt, um das Verhalten flüssiger und gasförmiger Stoffe gleichfalls zu testen.

- Abschließend wird sodann von den Schülern eine Übersicht erstellt, die zeigt, dass sich sowohl feste als auch flüssige und gasförmige Stoffe in der Regel ausdehnen. Dazu notieren sie jeweils auch einen Versuch mit einem Stichpunkt, der dies passend darstellt. (Arbeitsblatt 4) Die Überschrift „Ausdehnung bei Erwärmung“ wird für diese Übersicht ein letztes Mal aufgegriffen, um diesen Unterpunkt der Wärmelehre abzuschließen.

Hinweise für die Lehrkraft

Das Arbeiten mit Versuchen zum Erfassen von Phänomenen hat sich bewährt. Die Schüler arbeiten damit gerne und sind motiviert. Die Transferfragen sollen den Alltagsbezug herstellen. „Wenn Türme wachsen“ mit diesen Materialien zu bearbeiten und zu besprechen, wird zwischen vier und sechs Stunden umfassen, je nach Ausgangssituation in der Lerngruppe.


Folgendes Material wird verwendet:

Arbeitsblatt 1:
- Lehrerversuch: Bolzensprenger-Versuch (sollte in der Physiksammlung der Schule sein) und Bunsenbrenner, feuerfeste Unterlage, Schutzbrille. Sicherheitsabstände für die Lerngruppe beachten!

Arbeitsblatt 2a:
- Je 50 cm Kupfer- und Eisendraht, Stativ, Stativklemmen, Bunsenbrenner, Schutzbrille, feuerfeste Unterlage.
- 1-Euro-Münze, Kerze, Tiegelzange, Schutzbrille, Brettchen mit zwei Nägeln (Die Nägel müssen so angeordnet sein, dass die Münze im kalten Zustand gerade noch hindurchrutscht.)

Arbeitsblatt 2b:
- Lehrerversuch: Kugel-Ringversuch, Bunsenbrenner, feuerfeste Unterlage, Schutzbrille.

Arbeitsblatt 3a:
- Bimetallstreifen, Stativ, Stativklemme, feuerfeste Unterlage, Schutzbrille, Bunsenbrenner, Tiegelzange.

Arbeitsblatt 3b:
- Kerze, Bimetallstreifen, Nagel als Kontakt zum Bimetall, Stativ, Leiter mit Krokodilklemmen, Glühlampe, Lampenfassung, Flachbatterie, feuerfeste Unterlage.

Arbeitsblatt 4:
- Gefärbtes Wasser, Stehkolben, durchbohrter Gummistopfen mit Kapillar, 2 Bechergläser, Wasser, Dreibein mit Drahtnetz, Bunsenbrenner, feuerfeste Unterlage, Schutzbrille, Folienstift zum Markieren.
- Luftballon, Erlenmeyerkolben, Wasser, Eiswürfel, 2 Bechergläser, Dreibein mit Drahtnetz, Bunsenbrenner, feuerfeste Unterlage, Schutzbrille.

Unterrichtsmaterial zum gesamten Schwerpunkt

Achtung! Experiment | Unterricht

Die Sendungen „Achtung! Experiment“ sprechen den Wissensdurst und die Neugier von Kindern im Grundschulalter an. Ausgehend von Fragen wie „Warum…“ oder „Ist es möglich dass…“ werden zum Teil spektakuläre Experimente durchgeführt, die physikalische Phänomene und Gesetzmäßigkeiten beweisen. Meist beginnen sie in einer niedrigeren Größenordnung, die langsam gesteigert wird und verfolgen damit die didaktische Vorgehensweise „vom Kleinen zum Großen“.
Je spektakulärer der Versuchsaufbau (das Experiment), desto größer wird die Spannung, aber immer bleibt man auf dem Boden der Wissenschaft und zeigt nichts Irreales. Die Spannung wird durch gezielten Einsatz von Musik noch verstärkt. Auf spannende Rätsel gibt es also Antworten, die man oft sogar im Klassenraum nachvollziehen und erweitern kann. Durch die erzeugte Spannung hoch motiviert, werden die Schülerinnen und Schüler gerne weiter forschen und Physik nicht als trockene Unterweisung, sondern als eine aufregende Sache betrachten.

Alle Themen zum Schwerpunkt Achtung! Experiment

Ein Kamel auf Eiern

Ein Wettbewerb in der Wüste – Kamel gegen Mensch. Das Ziel: leichtfüßig über den Sand schreiten. Der Sieger: eindeutig das Kamel. Dabei bringt es satte 500 Kilogramm mehr auf die Waage als die menschliche Konkurrentin. Das Kamel hat aber einen anatomischen Vorteil: Vier große und flache Sohlen verteilen sein Körpergewicht perfekt. Der zweibeinige, stiefeltragende Mensch dagegen versinkt chancenlos im Sand.
Wie gut ist die Gewichtsverteilung des Kamels wirklich? Der Eiertest soll Klarheit schaffen. Wir stellen das Kamel auf 500 Eier. Bestehen die zerbrechlichen Schalen die Belastungsprobe?

Achtung! Experiment SWR Fernsehen

Der angezogene Sumoringer

Ein scheinbar ungleicher Kampf. Es treten an: der Sumoringer und ein Glas! Das Ziel: Das Glas soll den schwergewichtigen japanischen Kämpfer freischwebend in der Luft halten. Keine Hilfsmittel erlaubt, nur ein Deckel, der das Glas verschließt. An diesem Deckel wird der Ringer festgemacht. Jetzt hängt es einzig und alleine von der Kraft des Luftdrucks ab, ob der Ringer schwebt oder abstürzt.

Achtung! Experiment SWR Fernsehen

Der schwebende Wal

Das Geheimnis des Ballonflugs ist heiße Luft. Die Fahrer erhitzen die Luft mit einem Brenner, bis die Füllung ausreichend heiß ist. Dann fliegen sie los. Funktioniert dieser Trick auch mit der Kraft der Sonne? Wir testen das aus, unter extremen Bedingungen. Ein 50 Meter langer Ballon in der Form eines Wals wird gebaut. Erwärmt wird er ausschließlich von Sonnenstrahlen. Die Fahrerin steht schon bereit. Wird der Ballon mit ihr aufsteigen?

Achtung! Experiment SWR Fernsehen

Das Hochzeitskleid aus Salz

Ein Hochzeitskleid soll entstehen. Eine Traumrobe, über und über besetzt mit glitzernden Kristallen. Das Material des Kleides: Salz. Schneeweiß, funkelnd und ausgesprochen schwer zu verarbeiten. Die Salzkörner müssen sich an einem Drahtgerüst anlagern, ein kompliziertes Unterfangen. Temperatur, Mischung und Experimentdauer – alles muss exakt aufeinander abgestimmt sein. Nur so gelingt die perfekte Verbindung. Eine große Herausforderung für das Team.

Planet Schule: Achtung! Experiment - Das Hochzeitskleid aus Salz WDR Fernsehen

Der richtige Dreh

Zirkusartistin Michiru begeistert mit ihren atemberaubenden Lufttänzen das Publikum. Das Tempo ihrer Drehungen bestimmt sie mit ihrer Körperhaltung. Es scheint ganz einfach: Beine auseinander – langsames Kreiseln, Beine zusammen – schnelle Wirbel. Die Drehgeschwindigkeit hängt also davon ab, wie sie ihr Gewicht verlagert.
Wir wollen wissen, ob das auch mit mehreren Personen funktioniert. Vier Artisten schicken wir in die Arena. Auf einem rotierenden Rad sollen sie von außen nach innen klettern und damit Michirus Gewichtsverlagerung nachahmen. Wird sich das Rad schneller drehen, wenn die Artisten in der Mitte zusammentreffen?

Achtung! Experiment SWR Fernsehen

Am Ball bleiben

Wer einen Ball in die Luft wirft, möchte ihn wiederhaben. Kein Problem – senkrecht in die Höhe geworfen, kehrt der Ball brav zum Werfer zurück. Das gleiche gilt, wenn der Werfer sich beim Werfen vorwärts bewegt. Selbst in einem rasenden Zug – senkrecht geworfen, fällt der Ball immer wieder in die Hand des Werfers zurück.
Funktioniert das wirklich immer und überall? Wir wollen es wissen und planen den ganz großen Wurf. Von einem fahrenden Lastwagen aus schleudern wir mit einer Wurfmaschine einen Ball senkrecht und sehr hoch in die Luft. Fällt auch dieser Ball wieder zurück auf den fahrenden Lastwagen?

Achtung! Experiment SWR Fernsehen

Am längeren Hebel

Eine Dame ist in Not. Und nur der richtige Hebel kann sie retten. Was da in die Luft gehoben werden muss, ist aber nicht irgendetwas. Es handelt sich um einen schweren Lastwagen. Unter seinen Rädern hat sich der Schal der Dame verklemmt. Kann ein einzelner Mann, nur mithilfe eines Hebels, einen so gewichtigen Wagen anheben?

Achtung! Experiment SWR Fernsehen

Den Ball im Blick

Ob sich ein Objekt vorwärts, seitwärts oder rückwärts bewegt oder gar in der Luft stillsteht, ist manchmal gar nicht einfach zu entscheiden. Es ist eine Frage der Perspektive und der Bezugspunkte.
Wir machen ein aufwändiges Experiment, bei dem es gilt, alle Blickwinkel gleichzeitig einnehmen. Mit verschiedenen Kameras verfolgen wir den Flug eines Balls. Er wird mit 100 Kilometern pro Stunde in rückwärtiger Richtung aus einem Auto geschleudert. Auch das Auto fährt 100 Kilometer pro Stunde. In welche Richtung wird der Ball fliegen? Oder wird er gar in der Luft still verharren?

Achtung! Experiment SWR Fernsehen

Schnell abgeräumt

Alles ist fein gerichtet, der Tisch ist gedeckt. Und jetzt: ziehen wir mit einem Ruck die Tischdecke weg.
Kein Überfall von Rowdies, sondern ein physikalisches Experiment. Wir testen die Möglichkeiten und die Grenzen des Trägheitsgesetzes. Das geht nicht ohne Schweben ab, aber schließlich erkennen wir: Es kommt auf die richtige Geschwindigkeit an.

Achtung! Experiment SWR Fernsehen

Angestoßen

Das Ziel des Billardspiels ist eindeutig: Es geht darum, Kugeln in Löchern zu versenken. Dazu braucht es oft mehr als einen Stoß und mehr als eine Kugel. Trifft eine Kugel die andere, überträgt die rollende Kugel ihre Energie auf die ruhende. In unserem Fall sind 600 Kugeln im Spiel, aufgereiht hintereinander.
Ein Profibillardspieler wurde engagiert. Einmal darf er stoßen. Wird er es damit schaffen, die erste wie auch die letzte Kugel in Bewegung zu setzen?

Achtung! Experiment SWR Fernsehen

Das schnelle Pendel

Ein Pendel schwingt. Hin und her und her und hin… Das ist uns zu langsam. Wir wollen ein schnelles, rasantes Pendel. Aber wie bringt man ein Pendel dazu, so richtig Fahrt aufzunehmen?
Wir starten eine ganze Reihe von Versuchen. Und landen schließlich mit zwei Kränen, mehreren Laserpistolen und einem Riesenpendel in einer Sporthalle. Eine Geschwindigkeit von 100 Kilometern pro Stunde, diese Marke wollen wir erreichen. Dafür geben wir alles.

Achtung! Experiment SWR Fernsehen

Stimmprobe

Können wir mit bloßer Stimmgewalt ein Glas zerspringen lassen? Professionelle Sänger und Profi-Sportler stellen sich dieser Herausforderung. Jeweils drei Minuten lang setzen sie dem Glas mit ihrer Stimme zu. Doch sie alle scheitern; die erste Runde geht an das Glas. Mit entsprechender Technik dagegen klappt es: ein durchdringender Ton – von einem Tongenerator erzeugt – und das Glas zerspringt. Aber worauf kommt es dabei an? Spielen Tonhöhe und Lautstärke eine Rolle oder etwas ganz anderes? Unsere Probanden geben nicht auf. Ob sie es in der zweiten Runde schaffen?

Achtung! Experiment SWR Fernsehen

Schallparade

Wir können Schall hören, aber nicht sehen – die Schallgeschwindigkeit ist also eine unsichtbare Größe. Aber können wir sie trotzdem sichtbar machen? Ein Experiment soll Aufschluss geben: 86 Flaggenschwenker reihen sich auf einer 1,7 Kilometer langen geraden Straße auf. Ein Klang ertönt: Jeder hebt seine Flagge genau dann, wenn er diesen Klang hört. So müsste sich der Weg des Schalls verfolgen und die Schallgeschwindigkeit messen lassen. Ob das wirklich funktioniert?

Achtung! Experiment SWR Fernsehen

Das Geheimnis der Parabolantenne

Alle Parabolantennen haben die gleiche Form – die einer Parabel. Sie können Radiowellen aus den Tiefen des Alls empfangen, indem sie die schwachen Signale bündeln. Aber wie funktioniert das genau? Um das herauszufinden, haben wir einen Parabolspiegel im Studio aufgestellt. Wir lassen Bälle in den Parabolspiegel fallen und beobachten, wo diese aufkommen und wohin sie springen. Ob es uns so gelingt, das Geheimnis der Parabolantenne zu lüften?

Achtung! Experiment SWR Fernsehen

In der Sonne brutzeln

Sonnenstrahlen können sehr heiß sein, aber sind sie auch heiß genug zum Kochen? Aus vielen kreisförmig angeordneten Spiegeln bauen wir einen Solarkocher. Mit den Spiegeln bündeln wir die Sonnenstrahlen auf den Boden einer Bratpfanne. Ein Drei-Gänge-Menu soll gezaubert werden: Suppe, Gemüse und als Hauptgang ausgerechnet Steak! Um das zu braten, braucht man große Hitze und... Fingerspitzengefühl. Unser Chefkoch hat noch nie mit Sonnenlicht gekocht. Ob ihm das Debüt gelingt?

Achtung! Experiment SWR Fernsehen

Strampeln für Strom

Fahrradfahren und dabei Strom erzeugen? Keine Frage, denn mit dem Tritt in die Pedale können wir einen Generator antreiben. Aber wie viel Strom lässt sich mit reiner Muskelkraft erzeugen? Gelingt es uns, ein Karussell in Schwung zu bringen? Und die Festbeleuchtung soll auch angehen – insgesamt macht das 3500 Watt. Einer allein wird es kaum schaffen, aber für ein Team durchtrainierter Radprofis sollte das eigentlich kein Problem sein... Oder etwa doch?

Achtung! Experiment SWR Fernsehen

Zitronensaft auf Rädern

Hängen wir ein Magnesium- und ein Kupferplättchen in Zitronensaft, so entsteht elektrische Spannung, denn Saft und Metalle reagieren miteinander. Wir können einen Propeller antreiben. Ob wir mit Zitronensaft auch ein Auto zum Laufen bringen können? Das testen wir auf der Rennstrecke – mit einem ganz speziellen Rennwagen... Mit 1400 Zitronenbatterien bestückt, schicken wir ihn an den Start. Eine Strecke von 200 Metern soll er bewältigen. Ob das zu schaffen ist?

Planet Schule: Achtung! Experiment - Zitronensaft auf Rädern WDR Fernsehen

Ein Bild mit Anziehungskraft

Wie kopiert ein Kopierer eigentlich? Wenn wir ein Dokument einlegen, wird es belichtet, eingelesen und dann kopiert. Damit das klappt, erzeugt die Maschine elektrostatische Ladung – und zwar exakt an den Stellen, die, entsprechend dem Original-Dokument, bedruckt werden sollen. Und natürlich müssen wir Toner in den Kopierer füllen, der von der Ladung angezogen wird.
Ob wir mit elektrostatischer Ladung und Toner – aber ohne Kopierer – auch selbst ein Poster drucken können? Wir versuchen es im großen Stil, mit besonders leistungsstarken Ladepistolen...

Achtung! Experiment SWR Fernsehen

Der magnetische Ninja

Ein Magnet Marke Eigenbau? Nichts leichter als das! Kupferdraht um einen Nagel wickeln, die Enden des Drahts abisolieren, damit man ihn an eine Batterie anschließen kann... und fertig ist der Elektromagnet! Je größer die Anzahl der Wicklungen um den Nagel, desto stärker der Magnet. Aber kann so ein Magnet auch das Gewicht eines erwachsenen Mannes halten?
Der blaue Ninja muss es herausfinden: Er verfolgt seinen roten Kontrahenten, der ihm ein Geheimdokument gestohlen hat. Um den roten Ninja zu stellen, muss der blaue Ninja eine Stahlwand bezwingen – sein einziges Hilfsmittel: Elektromagnete!

Achtung! Experiment SWR Fernsehen

Die Eislupe

Wenn wir Papier im Sonnenlicht unter eine Lupe halten, brennt es, denn die Lupe bündelt die Sonnenstrahlen. Sie werden im Brennpunkt so heiß, dass sich das Papier entzündet. Aber wie wird Licht gebündelt? Das Geheimnis steckt in der Form der Lupe: Sie ist gewölbt. Brauchen wir eigentlich Glas oder können wir auch mit Eis Feuer machen, wenn wir es wie eine Lupe formen? Um das herauszufinden, verpasst unser Team einem 200 Kilogramm schweren Eisblock den richtigen Schliff...

Planet Schule: Achtung! Experiment - Die Eislupe WDR Fernsehen

Ein Motorrad unter Druck

Unter Wasser ist die Welt nicht schwerelos. Das wird in unserem Experiment sehr drastisch mithilfe eines Motorrads gezeigt. Wir setzen es dem Druck von 10 000 Metern Tiefe aus. Mit auf Tauchfahrt gehen einige Luftballons. Per Unterwasserkamera beobachten wir das Geschehen. Wer wird die Fahrt in die Tiefe besser überstehen: Maschine oder Ballon?

Planet Schule: Achtung! Experiment - Ein Motorrad unter Druck WDR Fernsehen

Eine Klinge aus Wasser

Mit einem Wasserstrahl einen Apfel zerschneiden – ob das möglich ist? Mit einer gewöhnlichen Wasserpistole klappt es nicht: Ihr Strahl ist zu schwach. Auch die Wasser-Pumpgun schafft es nicht, obwohl sie mehr Druck erzeugen kann.
Wir müssen schwereres Geschütz auffahren! Vielleicht kann ein Hochdruck-Straßenreiniger helfen? Die Pumpe des Fahrzeugs kann einen sehr hohen Wasserdruck erzeugen und eine extrem kleine Düse sorgt für einen scharfen Wasserstrahl. Hält der Apfel auch diesem Druck stand oder wird das Wasser so zur Klinge?

Achtung! Experiment SWR Fernsehen

Schatten auf Wanderschaft

Wo Licht ist, ist auch Schatten. Aber wie verhält es sich eigentlich genau mit Licht und Schatten? Dieser Frage gehen wir nach. Unser Testobjekt: ein 106 Meter hoher Turm. Seinem Schatten bleiben wir einen Tag lang auf den Fersen – mit einem acht Meter langen Fußabdruck aus Stoff! Im Halbstundentakt setzen wir den Riesenfuß an die Spitze des Turmschattens. So dokumentieren wir den Wanderweg des Schattens, Schritt für Schritt. Doch es wird eine Jagd mit Hindernissen, denn der Schatten hält sich nicht an die Verkehrsordnung: Er wandert in Parkanlagen, auf Baumwipfel, Balkone und sogar hinaus aufs Meer. Und die Zeit läuft, denn nur solange die Sonne da ist, können wir auch den Schatten verfolgen...

Achtung! Experiment SWR Fernsehen

Die Wasserwaage

Wir wollen einen Elefanten ohne Waage wiegen. Aber wie soll das gehen? Legen wir ein Gewicht auf ein Boot, dann sinkt das Boot ein. Erhöhen wir das Gewicht, sinkt das Boot tiefer ein. Das bedeutet also: Bei unterschiedlicher Belastung sinkt das Boot jeweils unterschiedlich tief ein; bei gleicher Belastung sinkt es jeweils gleich tief ein. Klingt ganz einfach!
Also, ein Floß nehmen und zunächst den Tiefgang des Floßes ohne den Elefanten markieren. Dann den Elefanten auf das Floß bugsieren und wieder den Tiefgang des Floßes markieren – diesmal mit dem Dickhäuter. Die Differenz der beiden Markierungen entspricht dem Gewicht des Elefanten. Aber wie viel wiegt er denn nun eigentlich genau?

Planet Schule: Achtung! Experiment - Die Wasserwaage WDR Fernsehen

Licht auf Umwegen

Einen Lichtstrahl soll durch ein Naturkundemuseum leuchten - 350 Meter weit! Dazu braucht man: Laserlicht und jede Menge Spiegel. Ob der Lichtstrahl wirklich ans Ziel gelangt?

Planet Schule: Achtung! Experiment - Licht auf Umwegen WDR Fernsehen

Der Meister und das Buch

Bücher kann man sammeln, lesen oder auch an ihnen einen Sumoringer in die Luft ziehen. Denn zwischen ihren Seiten stecken enorme Kräfte: die Reibungskräfte. Sie wollen wir nutzen, um den Meister der Sumoringer zu besiegen. Seine Gewichtskraft gegen die Kraft der Buchseiten. Werden wir es schaffen, ihn, nur gehalten von den Seiten zweier Bücher, in die Höhe zu ziehen?

Planet Schule: Achtung! Experiment - Der Meister und das Buch WDR Fernsehen

Schwingen bis der Strom fließt

Eine Glühbirne soll zum Leuchten gebracht werden. Die Energie dafür soll vom Erdmagnetfeld kommen. Ein großes Team steht bereit, um Drahtseile entlang der magnetischen Bahnen zu schwingen. Werden die Kräfte der magnetischen Pole ausreichen, um die Glühbirne zum Leuchten zu bringen?

Achtung! Experiment SWR Fernsehen

Ein Hubschrauber mit Gummiantrieb

Wenn wir ein Gummiband auseinanderziehen und loslassen, zieht es sich von selbst wieder zusammen. Dabei übt es Kraft aus – Spannkraft. Bündeln wir einzelne Gummibänder zu Strängen, können wir diese Spannkraft erhöhen. Aber wie groß ist sie überhaupt und wofür können wir sie nutzen? Als erstes versuchen wir, mit Gummibändern einen Propeller zu starten. Unser Team macht sich an die Arbeit und knüpft Tausende von Gummibändern zusammen…

Achtung! Experiment SWR Fernsehen

Das Luftballon-Fahrzeug

Viele prall aufgeblasene Ballons und ein Fahrzeug ohne Räder – zusammen ergibt das ein Luftkissenfahrzeug. Wir wollen es samt einem Fahrer in Bewegung versetzen. Gefährt und Fahrer zusammen wiegen über 100 Kilogramm. Können wir dieses massive Fahrzeug in Gang bringen, mit einem Antrieb aus Ballonluft?

Achtung! Experiment SWR Fernsehen

Klaviertransport mit Flaschenzug

Wer etwas Schweres heben möchte, braucht starke Muskeln – oder einen Flaschenzug. Funktioniert das auch, wenn ein Mensch ein Klavier heben will?

Achtung! Experiment SWR Fernsehen

Stand
Autor/in
Silke Küsters