Gefaltet und umgestaltet – die Entstehung der Alpen

Jedes Jahr kommen sich München und Venedig einen halben Zentimeter näher. Das ist zwar nicht viel, aber es ist messbar. Dass die deutsche und die italienische Stadt ganz langsam zusammenrücken, hat mit der Entstehung der Alpen zu tun.

Die Alpen sind im Vergleich zu anderen Gebirgen relativ jung. Ihre Geschichte beginnt „erst“ vor rund 250 Millionen Jahren als sich zwischen den Kontinenten Eurasien und Afrika ein flaches Meer bildet: die Tethys. Gesteinsschutt und Reste von Lebewesen setzen sich über einen langen Zeitraum auf dem Meeresboden ab und werden zu Kalkstein.

Von München aus sind die Alpen schon zu sehen
Quelle: Colourbox

Vor etwa 100 Millionen Jahren begibt sich die afrikanische Platte auf die Reise: Sie driftet nach Norden und drückt dabei heftig gegen den eurasischen Kontinent. Durch den Druck wird das Gestein gestaucht, es faltet sich wellenförmig auf. Die einzelnen Falten können dabei wenige Millimeter oder Hunderten von Metern erreichen. An einigen Stellen schieben sich die gefalteten Schichten wie Dachziegel übereinander und bilden sogenannte Gesteinsdecken. Schließlich steigt auch Magma auf; und zwar in dem Moment, in dem die Afrikanische Platte unter die Eurasische taucht. Das Gestein wird im Erdinneren aufgeschmolzen und steigt nach oben, erkaltet allerdings noch unter der Erdoberfläche. Aus diesem Grund bestehen die Zentralalpen unter anderem aus dem magmatischen Gestein Granit – im Gegensatz zum Kalkstein der nördlichen und südlichen Alpen.

Im Mittelmeer treffen Afrikanische und Eurasische Platte aufeinander
Quelle: Colourbox

Das gefaltete Gebiet hebt sich unter dem großen Druck schließlich über den Meeresspiegel hinaus. Zunächst erscheinen die Faltenrücken noch als längliche Inseln im Meer. Doch die Inselgruppe wird weiter nach oben gepresst und schiebt sich langsam zu einem Hochgebirge empor, in das die Flüsse tiefe Täler einschneiden. Große Mengen an Abtragungsschutt werden im Alpenvorland angehäuft. Während der Kaltzeiten schürfen gewaltige Gletscher tiefe Trogtäler und steile Bergflanken in das Gestein. Erst jetzt bildet sich die typische Hochgebirgslandschaft der Alpen, die uns im Sommer zum Wandern oder Klettern und im Winter zum Skifahren lockt.

Die Landschaft der Alpen lädt zum Wandern ein
Quelle: Colourbox

Bis heute driftet die Afrikanische Platte nach Norden. Darum werden die Alpen noch immer kräftig angehoben und zusammengestaucht. Dieses Zusammenstauchen ist der Grund dafür, dass uns Venedig und das gesamte Gebiet jenseits der Alpen jedes Jahr ein winziges Stückchen näher rücken.

Venedig rückt uns immer näher
Quelle: Colourbox

Dolomiten zu Weltnaturerbe erklärt

Drei Zinnen, Rosengarten und Geislerspitzen – mächtig erheben sich die steilen Felsgruppen der Dolomiten über die sonst sanft gewellte Landschaft. Wegen ihrer „einzigartigen monumentalen Schönheit“ wurden die Dolomiten jetzt in die Liste des UNESCO-Weltnaturerbes aufgenommen.

Wie spitze Zähne ragen ihre Gipfel in den Himmel. Wer die Dolomiten besucht, wandert über uralte Korallenriffe und kraxelt quer durch die Erdgeschichte. Denn wie die gesamten Alpen haben auch die Dolomiten vor Jahrmillionen begonnen, sich vom Meeresgrund empor zu heben und aufzufalten. Wind und Wetter formten mit der Zeit sanfte Hänge am Fuß ihrer Gipfel. Heute grasen hier im Sommer Kühe.

Jedes Jahr kommen Tausende von Touristen um die sagenhafte Landschaft zu bestaunen. Extremkletterer vollführen an den Steilwänden zirkusreife Kunststücke. Die märchenhafte Kulisse zieht aber nicht nur Wanderer und Bergsteiger an, sondern auch Berühmtheiten: Hollywood- Stars wie George Clooney und Tom Cruise sind hier schon abgestiegen. Und Reinhold Messner, selbst in Brixen geboren, begann in den Wänden der Dolomiten seine Karriere als Extremkletterer.

Beeindruckt von der grandiosen Natur zeigte sich auch das Welterbekomitee: Am 26. Juni wurden Teile der Dolomiten von der UNESCO zum Weltnaturerbe ernannt. Damit stehen die Dolomiten von nun an unter einem besonderen Schutz.

Blick vom Höhlensteinertal auf die Drei-Zinnen-Türme
Quelle: imago stock&people
Rosengartengruppe
Quelle: imago/Südtirolfoto
Hohe Gaisl
Quelle: imago/Südtirolfoto

Wie die „bleichen Berge“ zu den Dolomiten wurden

„Bleiche Berge“ werden die Dolomiten wegen ihrer Farbe auch genannt. Die Ladiner, älteste Bewohner der Gegend, erzählen sich viele Geschichten über ihre geheimnisvollen Berge: Vom Zwergenkönig Laurin und seinem verwunschenen Rosengarten ist die Rede und von einem Zwergenvolk, das die Gipfel mit Fäden aus Mondlicht eingesponnen hat. Schon immer regte diese Gebirgslandschaft die Phantasie an.

Nüchterner betrachtete dagegen der französische Geologe Déodat de Dolomieu ihr helles Felsgestein. Bei genauer Untersuchung fand er heraus, dass sie nicht wie vermutet aus reinem Kalkgestein bestanden. Einen großen Anteil hatte auch das Salz Magnesiumoxid. Das neu entdeckte Gestein der Gebirgskette wurde nach seinem Entdecker Dolomieu benannt: der Dolomit. Und die „bleichen Berge“ verwandelten sich – simsalabim – in die Dolomiten.

Durchbruch am Gotthard: Der längste Tunnel der Welt

Mit großem Jubel feiert die Schweiz den Durchstich ihres neuen Rekordhalters: Am 15. Oktober 2010 um 14.18 Uhr wurden die letzten Zentimeter Fels des geplanten Gotthardbasis-Tunnels durchbrochen. Die 57 Kilometer lange Röhre führt tief durch das Gestein des Schweizer Gotthard-Massivs. Sobald der Tunnel fertig ist, soll er die Fahrzeit durch die Alpen um fast eine Stunde verkürzen.

Gewaltige Bohrköpfe von knapp 10 Metern Durchmesser haben von zwei Seiten her den Tunnel in den Berg gegraben, der mit 57 Kilometern der längste der Welt sein wird. Sein nördlicher Eingang liegt in Erstfeld im Kanton Uri, sein Südportal in Bodio im Kanton Tessin. Auf ihm lasten bis zu zweieinhalb Kilometer Fels. Wenn der Tunnel 2017 für den Verkehr freigegeben ist, wird er gut neun Milliarden Euro gekostet haben.

Was die Bauarbeiten immer wieder erschwert: Unterschiedliche Gesteinsarten liegen dicht nebeneinander, von hartem Granit bis zu weichem Schiefer. Am 31. März 1996 brach über einem Stollen die Katastrophe herein: Aus einem Bohrloch schossen Tausende von Kubikmetern aufgeweichten Gesteinsbreis in den Erkundungsgang und überfluteten ihn. Sechs Arbeiter, die sich in der Nähe befanden, hatten unvorstellbares Glück: Sie überlebten ohne Verletzungen.

Ziel des Rekordtunnels ist, dass in Zukunft weniger LKWs über die Alpen fahren und mehr Güter mit dem Zug transportiert werden. Denn die Fahrzeit zwischen Zürich und Mailand wird durch den Eisenbahntunnel um etwa eine Stunde kürzer. Und weil der Verkehr über die Alpen weiter zunimmt, sind schon die nächsten Projekte in Planung: Am Mont-Cenis zwischen Frankreich und Italien soll ein 53 Kilometer langer Tunnel gebaut werden, ein anderer mit 55 Kilometern Länge am Brenner in Österreich.

Start des Versuchsbetriebs im Gotthard-Basistunnel
Quelle: imago stock&people
Einfahrt zum Eurotunnel in Calais
Quelle: imago stock&people
Gotthard-Basistunnel
Quelle: imago stock&people
Politische Prominenz beim Start des Versuchsbetriebs
Quelle: imago stock&people

Tunnel-Rekorde

Der bisher längste Eisenbahntunnel der Welt befindet sich im Norden Japans: Mit knapp 54 Kilometern Länge verbindet der Seikan-Tunnel die Inseln Hokkaido und Honshu. Die Hälfte der Strecke verläuft unter dem Meer. Auch der drittlängste Tunnel liegt unter Wasser: Durch den fast 50 Kilometer langen Eurotunnel unter dem Ärmelkanal verkehren Züge zwischen England und Frankreich. Weltlängster Straßentunnel ist zurzeit mit 24,5 Kilometern der Lærdalstunnel in Norwegen. Damit die Autofahrer beim Durchfahren nicht müde werden ist er besonders bunt beleuchtet.

Verwegene Theorie: Die Erdteile bewegen sich!

Während einer Tagung der Geologischen Gesellschaft in Frankfurt stellte der Meteorologe und Polarforscher Alfred Wegener eine gewagte Theorie auf: Nach seiner Meinung bewegen sich die Kontinente auf der Erde. Kollegen der Geologie äußern sich skeptisch bis ablehnend.

Hätte Alfred Wegener behauptet, die Erde sei eine Scheibe, er hätte bei seinen Zuhörern kaum mehr Verwunderung ausgelöst. Laut Wegener sollen alle Kontinente unserer Erde vor langer Zeit zu einer einzigen Landmasse vereint gewesen sein. Pangäa nennt er diesen Superkontinent, der sich auf dem Erdmantel bewegte und vor 200 Millionen Jahren in zwei Teile zerfiel. Diese beiden Erdteile sollen sich weiter geteilt und verschoben haben. Es gäbe deutliche Hinweise auf das Zerbrechen und die Bewegung der Kontinente: Sie passen wie Puzzleteile ineinander. Auffällig sei auch, dass die gleichen Tierarten auf unterschiedlichen Kontinenten vorkommen.

Afrika und Südamerika sollen also eins gewesen sein? Für die Fachwelt klingt Wegeners Rede so glaubhaft wie ein Märchen aus Tausendundeiner Nacht. Ist man doch bis zum heutigen Tag der Überzeugung, dass die Erdkruste mit ihrem Untergrund fest verbunden ist. Nach bisheriger Erkenntnis sind die Kontinente fix und waren einst über Landbrücken miteinander verbunden. Noch bezeichnen viele Geologen Wegeners Kontinentalverschiebung abfällig als „Geopoesie eines Wetterfrosches“. Denn ungeklärt ist vor allem der Motor der Bewegung: Was treibt die Kontinente an? Doch an der Theorie Alfred Wegeners kommt die Forschung nun nicht mehr vorbei. Ob sie sich auch beweisen lässt?

Ein Puzzle: Welche Teile passen zusammen?
Quelle: Colourbox
Die Gebirge Schottlands und Nordamerikas hingen einst zusammen.
Quelle: Colourbox

Alfred Wegener – ein Luftikus?

Bekannt wurde der Meteorologe Alfred Wegener durch einen Rekord, den er im Ballonflug aufstellte: Am 5. April 1906 stieg er zusammen mit seinem Bruder Kurt auf und blieb über 52 Stunden in der Luft. Damit war der bisherige Weltrekord um 17 Stunden überboten. Doch die Ballonfahrt diente nicht nur dem Ruhm, sondern vor allem der Wissenschaft: Die Wegener-Brüder wollten die Atmosphäre erforschen und Methoden zur Ortbestimmung testen. Das Interesse Alfred Wegeners gilt aber nicht nur dem Wetter und der Luftfahrt, sondern auch dem ewigen Eis. Noch im Jahr seines Weltrekords brach er auf, um Grönland zu erforschen. Von dieser Grönland-Expedition kehrte er 1908 zurück. Seitdem ist der 32-jährige Naturwissenschaftler Dozent für Meteorologie, Astronomie und Physik an der Universität Marburg.

Alarm in den Alpen

Droht unseren Gletschern der Hitzetod?

Er ist der gewaltigste aller Alpengletscher: Über 23 Kilometer Länge misst der Aletschgletscher in den Berner Alpen. Seine Eisdecke ist bis zu 900 Meter dick. Noch! Denn die weiße Pracht der Gletscher könnte schon bald Geschichte sein.

Seit Jahrzehnten beobachten Forscher, dass die Eismassen weniger werden. Durchschnittlich einen halben Meter Dicke verlieren sie pro Jahr. Schuld ist der Klimawandel, der die Temperaturen auf der Erde ansteigen lässt: In den immer wärmeren Sommern schmilzt mehr Eis als in der kalten Jahreszeit wieder hinzukommt. Besonders der heiße Sommer 2003 machte den Eisriesen zu schaffen: Damals waren große Teile der Gletscher weggeschmolzen. Inzwischen wird sogar befürchtet, die Alpengletscher könnten bereits in 30 Jahren verschwunden sein.

Für die Landschaft der Alpen wäre das ein großer Verlust – und eine Katastrophe für den Tourismus: Viele Wintersport-Orte leben von den Skigebieten auf Gletschern. Wenn Eis und Schnee schmelzen, bleiben auch die Touristen fern. Zusätzlich wird es Probleme mit der Wasserversorgung geben, wenn die Gletscher sterben. Denn in ihren Eismassen sind gewaltige Mengen Süßwasser gespeichert. Viele Orte müssten ihr Trinkwasser dann teuer und von weit her transportieren.

Der Klimawandel lässt die Gletscher schrumpfen.
Quelle: imago/imagebroker
Großer Aletschgletscher
Quelle: Colourbox

Frischhaltefolie für Gletscher

Um ihre Gletscher vor steigenden Temperaturen zu schützen, haben sich die Österreicher etwas ausgedacht: Sie bedecken ihre Gletscher im Sommer mit einer Frischhaltefolie aus Kunststoff. Die knapp vier Millimeter dicke, weiße Folie soll die Sonnenstrahlen reflektieren und so verhindern, dass Eis und Schnee abschmelzen. Und tatsächlich: Gletscherforscher bestätigen, dass die Folie das Abschmelzen stark verringert.

Auch in der Schweiz und Deutschland werden mittlerweile Gletscherfolien eingesetzt. Auch die Zugspitze bekommt nun regelmäßig einen „Sonnenhut“. Klimaschützer kritisieren, dass damit zwar das Abschmelzen des Eises für einige Zeit gebremst werde, die Erderwärmung könne man auf diese Weise aber nicht stoppen.

Wo Platten zusammenstoßen

Wenn zwei Fahrzeuge aufeinanderprallen, wird ihr Blech zusammengeknautscht. Ähnliches geschieht, wenn zwei Platten der Erdkruste zusammenstoßen. Dann wird ihr Gestein zusammengeschoben und ganz langsam in gewaltige Falten gelegt – so entstehen Faltengebirge. Was beim Autounfall die Knautschzone, ist bei der Kollision von Platten das Gebirge – nur dass ein Autounfall in Sekundenbruchteilen abläuft, eine Plattenkollision dagegen über viele Millionen Jahre.

Verformt durch den Aufprall: die Motorhaube
Quelle: Colourbox

Genauso sind die Alpen entstanden: Afrika drückte gegen den Eurasischen Kontinent und faltete das Gebirge auf. Auch der Himalaya in Asien oder die Anden in Südamerika verdanken ihre Herkunft dem Zusammenstoß von wandernden Erdkrustenplatten.

Schöne Knautschzone: die Alpen
Quelle: Colourbox

Bei einem solchen Crash schiebt sich das Gestein der leichteren Platte nach oben, die schwerere versinkt in der Tiefe. Dieser Vorgang heißt Subduktion, der Bereich, in dem die Platte abtaucht, Subduktionszone. Entlang dieser Zonen liegen oft tiefe Rinnen, weshalb sie gut zu erkennen sind. Die tiefste von ihnen ist der Marianengraben im Pazifischen Ozean. Diese Tiefseerinne liegt dort, wo die Pazifische Platte unter die Philippinische taucht.

Je weiter die Erdkrustenplatte im Erdinneren verschwindet, desto heißer wird es. Das Gestein schmilzt und in der Tiefe bildet sich Magma. Durch den wachsenden Druck kann es wieder nach oben gepresst werden. Wo es bis an die Erdoberfläche dringt, spucken Vulkane Lava und Asche. Ganze Ketten solcher Vulkane gibt es rund um die Pazifische Platte, zum Beispiel auf Indonesien. Weil sich hier ein Vulkan an den anderen reiht, heißt diese Plattengrenze auch „Pazifischer Feuerring“.

Ganze Ketten von Vulkanen reihen sich um den Pazifischen Feuerring wie hier auf Bali
Quelle: Colourbox

An solchen Plattenrändern brechen nicht nur Vulkane aus. Häufig bebt auch die Erde, weil die Plattenbewegung für ungeheuren Druck und wachsende Spannungen sorgt. Sobald diese sich entladen, erschüttern Beben die Erdoberfläche. In Japan zum Beispiel treffen gleich drei Platten aufeinander: die Pazifische, die Philippinische und die Eurasische. Aus diesem Grund wird Japan so oft von heftigen Erdbeben heimgesucht.

Japan ist besonders von Erdbeben bedroht
Quelle: Colourbox

Wie kommen Muscheln und Korallen in die Alpen?

Die Zugspitze, Deutschlands höchster Berg, ist nichts anderes als ein versteinertes Riff. Wer sie besteigt, der wandert über uralte Korallenreste. Fossilien wie versteinerte Riesenmuscheln und Ammoniten finden sich auf dem Dachstein in Österreich oder in den Dolomiten. Aber: Wie sind diese Überbleibsel von Meerestieren bis auf die höchsten Gipfel der Alpen gelangt?

Die Zugspitze ist …
Quelle: Colourbox

Die heutigen Alpen haben sich aus einem flachen Meer herausgehoben, dem Tethys-Meer. Vor etwa 200 Millionen Jahren drang dieses Meer nach Norden vor und bedeckte Teile von Süddeutschland. Damals herrschte hier ein tropisches Klima, es war viel wärmer als in der jetzigen Zeit. Heute wäre die Gegend vermutlich ein Urlaubsparadies wie die Malediven. Damals jedoch lebten hier keine Menschen. Stattdessen tummelten sich im warmen Meerwasser neben Fischsauriern auch Muscheln, Ammoniten und Korallen. Deren Schalen und Panzer bestanden aus Kalk, und lagerten sich nach ihrem Tod auf dem Meeresgrund ab. Zusammen mit abgetragenem Gesteinsschutt bildeten sie eine Schicht, die über Jahrmillionen immer dicker wurde. Durch Hitze und Druck wurden die mächtigen Kalkschichten zu festem Sedimentgestein gepresst.

…ein versteinertes Riff
Quelle: Colourbox
Wie auf den Malediven: Süddeutschland lag einst an einem tropischen Meer
Quelle: Colourbox

Vor etwa hundert Millionen Jahren begann sich die Afrikanische Platte nach Norden zu bewegen. Dabei drückte sie heftig auf die Eurasische Platte. Durch diese Kraft faltete sich der Meeresboden auf und wurde immer weiter in die Höhe gedrückt. Vom Grund des Meeres aus hoben sich allmählich die Alpen empor bis sie die Umgebung schließlich um Tausende von Metern überragten. Die Riffreste und Kalkschichten vom Meeresgrund wurden zu den nördlichen und südlichen Kalkalpen. Im Norden bauen sie den Wettersteinkalk der Zugspitze auf oder den Dachsteinkalk in Österreich. In den südlichen Kalkalpen bestehen die steilen Felsen der Dolomiten aus uralten Riffen. Dort finden Bergsteiger und Fossilienjäger im Kalkgestein noch unzählige Ammoniten und andere versteinerte Meerestiere. Die Zentralalpen bestehen dagegen aus Granit – eine Folge der Plattenkollision.

Ammonit
Quelle: Colourbox
Tolle Landschaft: die Dolomiten
Quelle: Colourbox

Berge in Bewegung

Mächtig und starr ragen Gebirge in die Höhe. Es scheint als könne nichts und niemand sie vom Fleck bewegen. Doch das stimmt nicht: Gebirge sind ständig in Bewegung – allerdings so langsam, dass wir die Veränderung mit bloßem Auge nicht sehen können.

Schnee am Kilimandscharo
Quelle: Colourbox

Der Grund dafür: Die Platten der Erdkruste bewegen sich. Und wenn zwei dieser Platten zusammenstoßen, wird das Gestein gestaucht, geschoben und aufgetürmt. Ähnlich wie bei einem Autounfall falten sich beim Aufprall an den Plattenrändern Gebirge auf. Berge und Täler sind also eine „Knautschzone“ der aufeinanderprallenden Platten. Allerdings passiert das nicht schlagartig wie bei einem Autounfall, sondern noch viel langsamer als in Zeitlupe. Das Ergebnis sind Faltengebirge wie die Anden in Südamerika. Dort gleitet die ozeanische Nazca-Platte unter die Südamerikanische Platte und quetscht das Gestein mit unglaublicher Kraft zusammen. Dabei türmt sich das langgezogene Gebirge der Anden auf, das über eine Strecke von 7500 Kilometer reicht. Die Anden sind damit die längste überirdische Gebirgskette der Welt.

Wie bei einem Crash schieben sich die Platten zusammen
Quelle: Colourbox
Die Anden sind wie die Alpen ein Faltengebirge
Quelle: Colourbox

Es gibt allerdings auch gewaltige Gebirge unter dem Meeresspiegel. Sie ziehen sich mitten durch die Ozeane. Auch sie verdanken ihr Dasein den beweglichen Platten. Dort wo sich am Meeresgrund zwei Platten voneinander weg bewegen, dringt Magma aus dem Mantel durch die ozeanische Kruste. Der heiße Gesteinsbrei erkaltet am Meeresboden und türmt sich zu Gebirgen, die Tausende von Metern lang sind: die Mittelozeanischen Rücken. Dort, wo die Lava den Meeresspiegel erreicht und darüber hinaus quillt, entstehen Inseln wie Island. Diese Gebirge, die im Meer geboren werden, sind die längsten der Erde. Der Mittelatlantische Rücken zieht sich von Nord nach Süd durch den ganzen Antlantik – etwa 20.000 Kilometer lang.

Island ist Teil des Mittelatlantischen Rückens
Quelle: Colourbox
Geysir auf Island
Quelle: Colourbox

Ein ständiger Wettlauf: Hebung gegen Abtragung

Matterhorn oder Mont Blanc wären heute eigentlich über 12000 Meter hoch – wenn Wind und Wetter ihnen nicht ständig zu Leibe gerückt wären. Denn während die Berge durch Kräfte im Erdinneren angehoben werden, schrumpfen sie gleichzeitig auch wieder: Ihr Gestein wird durch Wasser, Wind und Frost ausgewaschen und abgeschmirgelt. Im Fall der Alpen halten sich Hebung und Abtragung zurzeit die Waage. Sie bleiben in etwa gleich hoch.

Höchster Gipfel der Alpen: der Mont Blanc
Quelle: Colourbox

Anders als die Alpen wächst der Himalaya jedes Jahr ungefähr einen Zentimeter in die Höhe. In dieser Region drückt die Indische Platte gegen die Eurasische und hebt den Himalaya weiter an – und zwar so stark, dass die Abtragung nicht mithalten kann.

Der Himalaya wird immer höher
Quelle: Colourbox

Es gibt aber auch Gebirge, bei denen die Auffaltung zu Ende ist – sie schrumpfen nur noch. Diese Gebirge sind vor über 300 Millionen Jahren entstanden, sind also noch viel älter als die Alpen oder der Himalaya. Zu ihnen gehören viele unserer Mittelgebirge, zum Beispiel das Rheinische Schiefergebirge oder der Bayerische Wald. Sie wurden über Jahrmillionen abgeschliffen und sind heute niedriger als 2000 Meter.

Rund geschliffen: der Harz
Quelle: Colourbox

Den „Wettlauf“ zwischen Wachsen und Schrumpfen kann man auch bei Vulkangebirgen beobachten: Erloschene Vulkane verlieren ständig an Höhe. Stark verwittert ist zum Beispiel der Kaiserstuhl am östlichen Rheinufer. Vom einstigen Vulkan sind heute nur noch Ruinen übrig. Der Ätna auf Sizilien, Europas aktivster Vulkan, kann dagegen bei einem Ausbruch plötzlich einige Meter wachsen. Allerdings verliert er gelegentlich auch wieder an Höhe, wenn die kalt gewordene Lava einstürzt.

Blick auf den Ätna
Quelle: Colourbox

Hochgebirge und Mittelgebirge

Der Feldberg im Schwarzwald ist bei Wintersportlern besonders beliebt. Wegen seiner Höhe von 1493 Metern lässt es sich hier gut Ski fahren. Aber der Schwarzwald gehört, obwohl er hohe Berge hat, zu den deutschen Mittelgebirgen. Die Alpen sind dagegen ein Hochgebirge. Doch was ist eigentlich der Unterschied zwischen Mittel- und Hochgebirgen?

Skifahren macht auch im Mittelgebirge Spaß
Quelle: Colourbox

Die einfachste Antwort liegt nahe: Sie unterscheiden sich durch ihre Höhe. Hochgebirge beginnen ab 1500 – manche sagen auch ab 2000 – Meter über dem Meeresspiegel. Es sind also Gebirge, deren Gipfel weit über die Baumgrenze hinausragen. Typisch für Hochgebirge ist außerdem, dass sie von Gletschern geformt werden und steile Bergwände haben.

Schroffe Felsen sind typisch für Hochgebirge
Quelle: Colourbox
Die Alpen werden immer noch gehoben
Quelle: Colourbox

Mittelgebirge dagegen besitzen weder Gletscher noch steile Flanken. Ihre Landschaft ist eher hügelig und abgerundet. Das liegt daran, dass ihre Entstehung noch viel weiter zurückliegt als die der Alpen. Ursprünglich wurden auch sie zu Hochgebirgen aufgetürmt – vor mehr als 300 Millionen Jahren. Doch anders als in den Alpen findet in den Mittelgebirgen schon lange keine Hebung mehr statt. Sie werden nur noch abgetragen, ihre Formen rund geschliffen. Manche von ihnen sind bereits so stark verwittert und abgetragen, dass vom einstigen Hochgebirge nur noch der Rumpf übrig ist: die Rumpfgebirge. Zu ihnen gehören zum Beispiel das Erzgebirge und das Fichtelgebirge.

Zerborsten wie Eisschollen: Bruchschollengebirge
Quelle: Colourbox

Während ihrer langen Geschichte wurden die Mittelgebirge ständig umgestaltet. Auch die Auffaltung der Alpen ging nicht spurlos an ihnen vorüber. Die Kräfte der aufeinanderprallenden Platten setzten die alten Rümpfe der Mittelgebirge ordentlich unter Druck. Wegen ihres hohen Alters war das Gestein allerdings so fest und starr geworden, dass es nicht weiter gefaltet werden konnte. Wie eine gigantische Eisfläche zerbrach es stattdessen in riesige Schollen. Manche sanken in die Tiefe, andere begannen sich zu heben. Absinkende Schollen wurden zu tiefen Gräben, sich hebende Schollen entwickelten sich zu Hochplateaus. Die Landschaft, die daraus entstand, sind Bruchschollengebirge wie der Harz. Sein höchster Berg, der Brocken, ist immerhin 1141 Meter hoch. Zum Hochgebirge reicht das nicht, so dass der Harz klar zu den Mittelgebirgen gehört.

Höchster Punkt im Harz ist der Brocken
Quelle: Colourbox

Gebirgsklima und Höhenstufen in den Alpen

Auf der Zugspitze kann es sogar im Juni und Juli schneien. Und nicht nur dort: Auf einigen Alpengletschern ist Skifahren im Sommer möglich, auch wenn unten im Tal Badewetter ist. Doch woran liegt es, dass nur wenige Kilometer voneinander entfernt ein völlig anderes Klima herrscht?

Höhenstufen im Gebirge: Unten blühen Blumen, oben liegt Schnee
Quelle: Colourbox

Mit zunehmender Höhe sinkt die Temperatur, und zwar um etwa 6 Grad Celsius pro 1000 Höhenmeter. So kann es sein, dass auf der Zugspitze in 2.962 Meter Höhe über dem Meeresspiegel nur -1°C gemessen wird. Gleichzeitig steigt in München, auf 519 Meter Höhe, das Thermometer auf 14° C. In Gebirgsregionen ist es wegen der großen Höhe viel kälter als in tiefer gelegenen Regionen des gleichen Breitengrades. Und noch etwas ändert sich mit der Höhe, nämlich die Niederschläge. Weil kalte Luft weniger Feuchtigkeit speichern kann als warme, regnet oder schneit es oben mehr als unten. Selbst in den Tropen liegt deshalb auf Hochgebirgen wie den Anden oder dem Kilimandscharo Schnee.

Wenn sich Münchner schon an der Isar sonnen, liegt auf den Alpengipfeln noch Schnee
Quelle: Colourbox

Abhängig von den sinkenden Temperaturen und dem steigenden Niederschlag wechselt auch die Art der Vegetation. So bilden sich im Gebirge auf kleinem Raum verschiedene Vegetationszonen, die Höhenstufen genannt werden. Teilweise sind die Grenzen dieser Höhenstufen deutlich zu erkennen, zum Beispiel die Baum- oder die Schneegrenze.

Bauernhof in den Schweizer Alpen
Quelle: Colourbox

In den Alpen und anderen Hochgebirgen der gemäßigten Breiten beginnen die Höhenstufen mit der sogenannten Hügellandstufe, in der noch Landwirtschaft betrieben wird. In Richtung Gipfel folgt die Bergstufe mit Misch- und Nadelwäldern. Oberhalb der Baumgrenze gedeihen nur noch verschiedene Zwergsträucher und Wiesen, die im Sommer oft als Viehweide für die Almwirtschaft genutzt werden. Über der Schneegrenze fehlt die Vegetation völlig, weil Kälte, Schnee und Eis das Pflanzenwachstum verhindern.

Über der Baumgrenze weiden im Sommer die Kühe
Quelle: Colourbox

Auch in anderen Klimazonen besitzen Gebirge solche Höhenstufen. Dort gedeihen jedoch andere Pflanzengemeinschaften und die Höhenstufen sind verschoben: So liegt die Schneegrenze in den Tropen viel höher als etwa in den Alpen.

Je höher, desto weniger Bäume
Quelle: Colourbox