Alle Videos nach Schlagworten

  • Lack

    • Was ist eine Radierung?

      Die Radierung ist eine Drucktechnik aus dem 16. Jahrhundert. Dabei wird zunächst eine Blei-stiftzeichnung auf eine lackierte Druckplatte übertragen; anschließend werden die gezeich-neten Linien in die Lackschicht eingeritzt. Ein Säurebad sorgt dafür, dass sich die eingeritzten Linien in die Platte einätzen. Daher wird dieses Tiefdruckverfahren auch als Ätztechnik be-zeichnet. Doch wie funktioniert diese Technik genau?

      Wichtig bei einer Radierung: Ätzgrund, Radiernadel und Kupferstichel

      Der Künstler Stefan Becker demonstriert das Verfahren: Er zeichnet die Fassade des Heidel-berger Schlosses und überträgt seine Skizze auf Pauspapier. Vorher hat er eine Kupferplatte mit einem säurefesten Lack präpariert. Nachdem dieser Ätzgrund getrocknet ist, überträgt der Künstler seine Zeichnung spiegelverkehrt auf die versiegelte Kupferplatte. Dann folgt Schritt zwei: Der Künstler kratzt, ritzt und schabt das Motiv seiner Radierung in die Lack-schicht. Für die Herstellung dieser Vertiefungen benutzt er besondere Werkzeuge wie einen Kupferstichel oder eine Radiernadel. Diese Vorgehensweise gab der Radierung ihren Namen: Das lateinische Wort „radere“ bedeutet so viel wie „schaben“ und „kratzen“.

      Radierung: Tiefdruckverfahren mit Säurebad

      Doch damit ist die Druckplatte noch nicht fertig. Die Kupferplatte mit der eingeritzten Zeich-nung kommt in ein spezielles Säurebad. Dort, wo der Lack eingeritzt wurde, ätzen sich die feinen Linien in das Kupfer ein. Nach dem Säurebad bearbeitet der Künstler mit einem Sti-chel noch einige Vertiefungen nach. So entstehen unterschiedliche Tiefen in der Radierung. Dann wird es spannend: Stefan Becker trägt die Druckfarbe gleichmäßig auf die Druckplatte auf und wischt die überschüssige Farbe wieder ab. So bleibt nur in den Vertiefungen der Kupferplatte Farbe zurück. Diese Farbe saugt das Papier in der Druckerwalze wie ein Schwamm auf – daher auch der Begriff „Tiefdruckverfahren“. Das Druckpapier muss übri-gens vorher gewässert werden, damit es aufquillt und saugfähig ist. Fertig ist die Radierung!

      Seit der Renaissance produzieren Künstler Radierungen

      Radierungen gibt es (in der Kunst) erst seit der Erfindung des Papiers in Europa. Zunächst archivierten vor allem Gold- und Waffenschmiede ihre Skizzen auf Papier. Bis zu diesem Zeitpunkt kannte man in der Kunst vor allem ein grafisches Verfahren, den Kupferstich. Der Schweizer Urs Graf soll im 16. Jahrhundert mit als Erster die Technik der Radierung ange-wandt haben. Berühmte Künstler wie Albrecht Dürer, Rembrandt und später im 17./18. Jahrhundert Hercules Seghers und Francisco de Goya experimentierten auf unterschiedliche Weise mit der neuen Drucktechnik. Besonders Goya brachte die Drucktechnik der Aquatinta mit seinen Radierzyklen „Los Caprichos“ und „Desastres de la Guerra“ zur Vollendung.

      Bekannteste Ätztechnik: die Radierung

      Die Radierung ist die bekannteste Ätztechnik unter den Tiefdrucktechniken. Dieses Druckver-fahren ist nicht zu verwechseln mit der Kaltnadelradierung. Bei der Kaltnadelradierung wird die Zeichnung nicht auf den Ätzgrund, sondern direkt mit einer Stahlnadel auf der Druckplat-te ausgeführt. Weitere Verfahren ähnlicher Art entstanden in den folgenden Jahrhunderten: Dazu zählen die Weichgrundätzung, das Aquatintaverfahren, die Heliogravüre und die Crayon-Manier.


  • Ladung

  • Lamellen

  • Landmaschine

  • Landschaftspflege

    • Auf der schwäbischen Alb grasen Tiere, die wie Auerochsen und Urpferde aussehen. Diese sind allerdings schon längst ausgestorben. Was sind das also für Tiere, die heute dort weiden und ihrer urigen Verwandtschaft zum Verwechseln ähnlich sehen? Und welche wichtige Rolle spielen sie bei einem Artenschutzprojekt?


  • Landwirtschaft

  • Larve

    • Wie lebt eine Erdhummel?

      Im Frühling erwachen die Königinnen der Erdhummeln aus ihrem Winterschlaf und suchen Nektar. Dabei tanken sie Energie und bauen auch einen neuen Staat Insektenstaat auf. Dazu nisten die Königinnen vorzugsweise in verlassenen Mäusenestern oder Maulwurfbauten, die bis zu 1,50 Meter tief unter der Erde liegen.

      Die Erdhummel, ein Ubiquist

      Am häufigsten kommt in Europa die Dunkle Erdhummel vor, auch Bombus terrestris genannt. Sie lebt in Feldern, Wiesen, an Waldrändern, in Parks und Gärten – sowohl im Flachland als auch im Mittelgebirge. Man erkennt diese Hummelart an ihrer schwarzen Farbe mit zwei gelben Querbinden und einem weißen Hinterteil. Dennoch ist sie in freier Wildbahn nur schwer von anderen Erdhummelarten wie der Hellen Erdhummel oder der Großen Erdhummel zu unterscheiden.

      Die Königin gründet einen neuen Hummelstaat

      In ihren Nestern formen die Königinnen aus Wachs kleine tonnenartige Zellen, die sie mit Nektar befüllen. In diese Wachskammern legen die Erdhummeln ihre Brut. Bei der Wahl ihres Baus achten die Hummeln darauf, dass es in der Umgebung genügend nektarreiche Blumen gibt. Denn: Die Königin besucht bis zu 6.000 Blüten, um ihre erste Brut aufzuziehen. Aus den geschlüpften Larven entwickeln sich die Arbeiterinnen für den neuen Hummelstaat. Die Hummelkönigin ist mit einer Länge von 2,5 Zentimetern die Größte im Nest, gefolgt von den Drohnen und den sehr viel kleineren Arbeiterinnen. In einem Nest können bis zu 500 Erdhummeln zusammenleben.

      Erdhummeln schützen ihre Brut vor Hitze und Regen

      Die Erdhummeln haben faszinierende Strategien entwickelt, um sich vor Gefahren zu schützen: Wird es zu heiß im Hummelnest, werfen die Arbeiterinnen ihre eigene „Klimaanlage“ an: Sie kühlen die Luft mit heftigem Flügelschlagen. Wird es zu nass, fächeln die Erdhummeln ihre Brut trocken und saugen das Regenwasser ab. Auf diese Weise wird die Brut gerettet.

      Jungköniginnen sichern den Bestand der Erdhummeln

      Im Herbst, wenn der Blütennektar rar wird, verenden die Königinnen und ihre Völker. Nur die ab Juni geschlüpften Jungköniginnen können den Winter überleben. Die Erdhummeln stärken sich an den letzten Nektarquellen und suchen sich ein sicheres Versteck für den Winter. Damit ist die neue Population der Erdhummeln für das kommende Jahr gesichert.


  • Laser

  • Lava

  • Leben

    • Was ist der genetische Code?

      Über sieben Milliarden Menschen leben heute auf der Erde und jeder einzelne von Ihnen ist ein Unikat. Wie kann das sein? Der „genetische Code“ macht es möglich! In diesem Code sind die Informationen gespeichert, die der Körper braucht, um Proteine - die Grundbausteine des Lebens - zu bilden. Eine virtuelle Reise ins Innere einer Zelle zeigt die wichtigsten Schritte vom genetischen Code zum Protein und verdeutlicht das faszinierende Zusammenspiel von DNA, RNA und Enzymen.


  • Lebensmittel

  • Lebensraum

    • Auf der schwäbischen Alb grasen Tiere, die wie Auerochsen und Urpferde aussehen. Diese sind allerdings schon längst ausgestorben. Was sind das also für Tiere, die heute dort weiden und ihrer urigen Verwandtschaft zum Verwechseln ähnlich sehen? Und welche wichtige Rolle spielen sie bei einem Artenschutzprojekt?


  • Leder

  • Lehnswesen

  • Leistung (Physik)

  • Licht

    • Tiere fressen Pflanzen oder andere Tiere. Aber wovon ernähren sich eigentlich Pflanzen? Können sie von Wasser, Luft und Licht alleine leben?


    • Kann man mit Eis Feuer machen?

      Dass man mit einer Lupe Feuer machen kann, ist bekannt. Dabei wird das Sonnenlicht im Brennpunkt der Linse gebündelt, das Papier dahinter fängt durch die entstandene Hitze Feuer. Aber funktioniert das Ganze auch mit einer Linse aus Eis? Denn: Feuer und Eis sind doch Gegensätze. Planet Schule macht das Experiment mit einer selbst gebauten Eis-Linse.

      Im Brennpunkt der Linse entsteht Feuer

      Folgende „Zutaten“ sind für das Feuer-Eis-Experiment notwendig: eine Lupe aus Eis, brennbares Material wie Papier, trockene Äste oder Blätter und natürlich Sonnenlicht. Ohne das geht gar nichts. Hält man ein Lupenglas zwischen Sonne und ein Stück Zeitungspapier, so fällt ein heller Fleck auf dem Papier auf. Mithilfe der Lupe werden die Sonnenstrahlen konzentriert und gleichzeitig wird Hitze gesammelt. Die Energiedichte des Lichtes steigt. Und noch etwas fällt auf: Verändert man die Entfernung von Lupe und Papier, wird der helle Lichtfleck je nachdem größer oder kleiner. Erst wenn der Punkt sehr klein ist, beginnt die Zeitung zu qualmen. Dieser Punkt heißt Brennpunkt. Hier kreuzen sich die Sonnenstrahlen, die parallel zur optischen Achse einfallen. Die Linse „verbiegt“ quasi das parallel einfallende Sonnenlicht.

      Ohne Lupe, Brennglas oder Linse kein Feuer

      Doch warum muss es eine Lupe sein? Vielleicht tut es auch ein durchsichtiges Glas? Die Antwort lautet nein. Das Glas muss eine besondere Form aufweisen: In der Mitte ist es dicker als am Rand. Diese Wölbung der Linse ist der Grund dafür, dass Sonnenstrahlen gebündelt werden können. In der Optik heißt eine solche Linse auch Sammellinse oder Konvexlinse. Oft spricht man auch von Brennglas, da das Glas einen Brennpunkt liefert. Linsengläser sind beispielsweise Lupen, Brillengläser, Objektive oder Ferngläser. Fest steht: Damit Feuer entstehen kann, muss die Linse durchsichtig und gekrümmt sein. Aber muss sie auch zwingend aus Glas bestehen? Oder kann man auch mit einer Linse aus Eis Feuer machen?

      Das Experiment: Feuer machen mit einer Lupe aus Eis

      Für das Experiment wird ein 200 Kilo schwerer Eisblock mit einer Kettensäge und einem Schaber bearbeitet. Nach einer Stunde ist aus dem Eisblock eine gigantische Lupe aus gefrorenem Wasser entstanden. Gut poliert wird sie schräg gegen die Sonne gestellt, das Brennmaterial dahinter positioniert, der Brennpunkt justiert. Und tatsächlich: Nach kurzem Zündeln fängt das Brennmaterial Feuer. Eis taugt folglich genauso wie Glas als Material für eine Linse.

      Tipps für das Experiment mit Brennglas und Feuer

      Wer mit einer Lupe selber ein Feuer machen möchte, der sollte Folgendes beachten. Ein sonniger Tag, am besten um die Mittagszeit, ist Voraussetzung. Bei wolkenverhangenem Himmel funktioniert das Experiment nicht. Außerdem darf es nur im Freien und auf nicht brennbarem Boden durchgeführt werden. Das Experiment funktioniert schneller mit Zeitungspapier, da dieses schon bei 175 Grad brennt, Holz hingegen erst ab 280 Grad. Wie schnell ein Feuer mit einer Linse entfacht wird, hängt also von der Energiedichte ab, die das Brennglas liefert. Außerdem sind die Zündtemperatur des Materials sowie die Wärmeleitfähigkeit am Brennfleck entscheidend.

       

      Schlagworte: Brennpunkt, Licht, Linse, Lupe

    • Im Sonnenlicht wirft ein Turm einen Schatten. Einen Tag lang bleiben wir ihm auf den Fersen und dokumentieren, wie er wandert.


    • Einen Lichtstrahl wollen wir durch ein Gebäude über mehrere Stockwerke lenken, 350 Meter weit! Die einzigen Hilfsmittel: Laserlicht und Spiegel. Ob das gelingt?


    • Gebündeltes Licht, das sehr energiereich ist - das ist ein Laserstrahl. Wie vielseitig Laser eingesetzt werden können, zeigt dieser Film.


    • Laser sind inzwischen alltägliche Geräte geworden. Aber wie genau entsteht in diesen Geräten eigentlich der Laserstrahl? Wir zeigen das physikalische Prinzip und die technische Umsetzung.

      Schlagworte: Elektronen, Laser, Licht

    • Auf einer großen Wand wollen wir einen Regenbogen erzeugen - mit Hilfe der Sonne und mit Glasperlen statt Regentropfen. Wenn das gelingt, sollen unsere Leute über diesen Regenbogen spazieren - ein ehrgeiziges Vorhaben!

      Schlagworte: Licht, Regen, Sonne, Wetter

    • Warum ist der Himmel blau?

      Betrachtet man den Himmel an einem Sommertag vom Weltall aus, ist er schwarz, das Licht der Sonne gleißend weiß. Von der Erde aus gesehen wirken die Farben anders: Der Himmel ist strahlend blau, die Sonne wirft ein warmes, gelbes Licht.

      Blauer Himmel durch farbiges Licht der Sonne

      Warum der Himmel von der Erde aus betrachtet blau erscheint, liegt an der Beschaffenheit des Sonnenlichtes. Das Licht der Sonne besteht aus einzelnen Lichtstrahlen, die sich wellenartig fortbewegen. Sieht man alle Lichtstrahlen auf einmal, erscheint das Licht weiß. Wird das Licht jedoch abgelenkt, beispielsweise durch ein Prisma, dann werden einzelne Spektralfarben sichtbar wie Rot, Orange, Gelb, Grün, Violett oder Blau. Die Lichtstrahlen der Sonne bestehen somit aus bunten Farben.

      Das Rayleigh-Phänomen erklärt den blauen Himmel

      Auf ihrem Weg zur Erde durchdringen die Sonnenstrahlen die Erdatmosphäre. Diese besteht aus unsichtbaren Gasmolekülen, vor allem aus Stickstoff- und Sauerstoff. Treffen die Lichtstrahlen der Sonne auf diese kleinen Teilchen, werden sie abgelenkt, beziehungsweise gestreut. Da jede Farbe eine andere Wellenlänge hat, ist die Streuung unterschiedlich. Wenn die Sonne hoch am Himmel steht, so ist der Weg, den das Licht durch die Atmosphäre zurücklegen muss, relativ kurz. Es wird vor allem blaues Licht gestreut - der Himmel wirkt blau. Dieses Phänomen wird auch Rayleigh-Streuung genannt. Der Engländer John William Strutt, 3. Baron Rayleigh, entdeckte das physikalische Prinzip, das den blauen Himmel verursacht, im 19. Jahrhundert.

      Rotes Sonnenlicht verursacht Farbe beim Sonnenuntergang

      Zu Sonnenaufgang oder Sonnenuntergang zeigt der Himmel andere Farben als das Blau am Tage. Variationen von Rottönen lösen das Blau ab und auch die tagsüber gelblich wirkende Sonne erscheint rot. Das liegt daran, dass die Sonnenstrahlen morgens oder abends einen längeren Weg durch die Atmosphäre haben, weil die Sonne tiefer steht: Es wird vor allem rotes Licht gestreut. Denn: Die Moleküle fangen nach einer kurzen Strecke das kurzwellige blaue Licht ab; auf der Erde kommen nur noch die langwelligen roten Strahlen an. Dies wird als Sonnenaufgang oder Sonnenuntergang sichtbar.

      Experiment mit Taschenlampe – Sonne und blauer Himmel

      Schüttet man Milch in ein großes durchsichtiges Glas mit Wasser, so kann man die Lichtstreuung des Himmels nachahmen. Die Fettmoleküle der Milch, in der Rolle der Moleküle in der Atmosphäre, streuen das Licht der Taschenlampe. Das Licht erscheint blau, die Lichtquelle erzeugt einen gelblichen Schein wie die Sonne.


    • „Mit Licht malen“, so beschreibt Lichttechniker Glenn seinen Beruf. Unzählige Scheinwerfer müssen die Lichttechniker im SWR-Studio bedienen. Vor jeder Sendungsaufzeichnung legen sie die passenden Lichteinstellungen fest: So können sie Moderationen, Showeinlagen oder Interviews ins rechte Licht rücken…


    • Warum wird es jeden Tag hell und jede Nacht dunkel? Und warum sind die Tage bei uns im Sommer länger als im Winter?


  • Lichtbrechung

    • Zwei Parabolspiegel stehen sich gegenüber. Die Verbindung zwischen den Spiegeln folgt festen Gesetzen. Wie funktioniert die Übertragung von Licht- und Schallwellen?


    • Warum ist der Himmel blau?

      Betrachtet man den Himmel an einem Sommertag vom Weltall aus, ist er schwarz, das Licht der Sonne gleißend weiß. Von der Erde aus gesehen wirken die Farben anders: Der Himmel ist strahlend blau, die Sonne wirft ein warmes, gelbes Licht.

      Blauer Himmel durch farbiges Licht der Sonne

      Warum der Himmel von der Erde aus betrachtet blau erscheint, liegt an der Beschaffenheit des Sonnenlichtes. Das Licht der Sonne besteht aus einzelnen Lichtstrahlen, die sich wellenartig fortbewegen. Sieht man alle Lichtstrahlen auf einmal, erscheint das Licht weiß. Wird das Licht jedoch abgelenkt, beispielsweise durch ein Prisma, dann werden einzelne Spektralfarben sichtbar wie Rot, Orange, Gelb, Grün, Violett oder Blau. Die Lichtstrahlen der Sonne bestehen somit aus bunten Farben.

      Das Rayleigh-Phänomen erklärt den blauen Himmel

      Auf ihrem Weg zur Erde durchdringen die Sonnenstrahlen die Erdatmosphäre. Diese besteht aus unsichtbaren Gasmolekülen, vor allem aus Stickstoff- und Sauerstoff. Treffen die Lichtstrahlen der Sonne auf diese kleinen Teilchen, werden sie abgelenkt, beziehungsweise gestreut. Da jede Farbe eine andere Wellenlänge hat, ist die Streuung unterschiedlich. Wenn die Sonne hoch am Himmel steht, so ist der Weg, den das Licht durch die Atmosphäre zurücklegen muss, relativ kurz. Es wird vor allem blaues Licht gestreut - der Himmel wirkt blau. Dieses Phänomen wird auch Rayleigh-Streuung genannt. Der Engländer John William Strutt, 3. Baron Rayleigh, entdeckte das physikalische Prinzip, das den blauen Himmel verursacht, im 19. Jahrhundert.

      Rotes Sonnenlicht verursacht Farbe beim Sonnenuntergang

      Zu Sonnenaufgang oder Sonnenuntergang zeigt der Himmel andere Farben als das Blau am Tage. Variationen von Rottönen lösen das Blau ab und auch die tagsüber gelblich wirkende Sonne erscheint rot. Das liegt daran, dass die Sonnenstrahlen morgens oder abends einen längeren Weg durch die Atmosphäre haben, weil die Sonne tiefer steht: Es wird vor allem rotes Licht gestreut. Denn: Die Moleküle fangen nach einer kurzen Strecke das kurzwellige blaue Licht ab; auf der Erde kommen nur noch die langwelligen roten Strahlen an. Dies wird als Sonnenaufgang oder Sonnenuntergang sichtbar.

      Experiment mit Taschenlampe – Sonne und blauer Himmel

      Schüttet man Milch in ein großes durchsichtiges Glas mit Wasser, so kann man die Lichtstreuung des Himmels nachahmen. Die Fettmoleküle der Milch, in der Rolle der Moleküle in der Atmosphäre, streuen das Licht der Taschenlampe. Das Licht erscheint blau, die Lichtquelle erzeugt einen gelblichen Schein wie die Sonne.


  • Lichtstrahl

  • Limes

    • Bis ins Rheinland und in den Donauraum dringen die Römer in das Land vor, das sie Germania nennen. Auf dem Gebiet des heutigen Deutschland errichten sie drei Provinzen: Germania inferior, Germania superior und Raetia. Doch wie gelingt es den Römern, diese Provinzen über Jahrhunderte gegen Angreifer aus dem freien Germanien zu sichern?

      Schlagworte: Limes, Rhein, Römer

    • War der Limes eine undurchdringliche Grenze zum freien Germanien? Wirtschaftlich gesehen offensichtlich nicht, denn die Nachfrage der Römer nach Rohstoffen und Waren war groß. Der Handel mit den germanischen Nachbarn florierte. Doch was genau wurde gehandelt?


  • Linse

    • Kann man mit Eis Feuer machen?

      Dass man mit einer Lupe Feuer machen kann, ist bekannt. Dabei wird das Sonnenlicht im Brennpunkt der Linse gebündelt, das Papier dahinter fängt durch die entstandene Hitze Feuer. Aber funktioniert das Ganze auch mit einer Linse aus Eis? Denn: Feuer und Eis sind doch Gegensätze. Planet Schule macht das Experiment mit einer selbst gebauten Eis-Linse.

      Im Brennpunkt der Linse entsteht Feuer

      Folgende „Zutaten“ sind für das Feuer-Eis-Experiment notwendig: eine Lupe aus Eis, brennbares Material wie Papier, trockene Äste oder Blätter und natürlich Sonnenlicht. Ohne das geht gar nichts. Hält man ein Lupenglas zwischen Sonne und ein Stück Zeitungspapier, so fällt ein heller Fleck auf dem Papier auf. Mithilfe der Lupe werden die Sonnenstrahlen konzentriert und gleichzeitig wird Hitze gesammelt. Die Energiedichte des Lichtes steigt. Und noch etwas fällt auf: Verändert man die Entfernung von Lupe und Papier, wird der helle Lichtfleck je nachdem größer oder kleiner. Erst wenn der Punkt sehr klein ist, beginnt die Zeitung zu qualmen. Dieser Punkt heißt Brennpunkt. Hier kreuzen sich die Sonnenstrahlen, die parallel zur optischen Achse einfallen. Die Linse „verbiegt“ quasi das parallel einfallende Sonnenlicht.

      Ohne Lupe, Brennglas oder Linse kein Feuer

      Doch warum muss es eine Lupe sein? Vielleicht tut es auch ein durchsichtiges Glas? Die Antwort lautet nein. Das Glas muss eine besondere Form aufweisen: In der Mitte ist es dicker als am Rand. Diese Wölbung der Linse ist der Grund dafür, dass Sonnenstrahlen gebündelt werden können. In der Optik heißt eine solche Linse auch Sammellinse oder Konvexlinse. Oft spricht man auch von Brennglas, da das Glas einen Brennpunkt liefert. Linsengläser sind beispielsweise Lupen, Brillengläser, Objektive oder Ferngläser. Fest steht: Damit Feuer entstehen kann, muss die Linse durchsichtig und gekrümmt sein. Aber muss sie auch zwingend aus Glas bestehen? Oder kann man auch mit einer Linse aus Eis Feuer machen?

      Das Experiment: Feuer machen mit einer Lupe aus Eis

      Für das Experiment wird ein 200 Kilo schwerer Eisblock mit einer Kettensäge und einem Schaber bearbeitet. Nach einer Stunde ist aus dem Eisblock eine gigantische Lupe aus gefrorenem Wasser entstanden. Gut poliert wird sie schräg gegen die Sonne gestellt, das Brennmaterial dahinter positioniert, der Brennpunkt justiert. Und tatsächlich: Nach kurzem Zündeln fängt das Brennmaterial Feuer. Eis taugt folglich genauso wie Glas als Material für eine Linse.

      Tipps für das Experiment mit Brennglas und Feuer

      Wer mit einer Lupe selber ein Feuer machen möchte, der sollte Folgendes beachten. Ein sonniger Tag, am besten um die Mittagszeit, ist Voraussetzung. Bei wolkenverhangenem Himmel funktioniert das Experiment nicht. Außerdem darf es nur im Freien und auf nicht brennbarem Boden durchgeführt werden. Das Experiment funktioniert schneller mit Zeitungspapier, da dieses schon bei 175 Grad brennt, Holz hingegen erst ab 280 Grad. Wie schnell ein Feuer mit einer Linse entfacht wird, hängt also von der Energiedichte ab, die das Brennglas liefert. Außerdem sind die Zündtemperatur des Materials sowie die Wärmeleitfähigkeit am Brennfleck entscheidend.

       

      Schlagworte: Brennpunkt, Licht, Linse, Lupe

  • Linse (Optik)

  • Lößablagerungen

  • Luft

    • Wir wollen ein 100 Kilogramm schweres Gefährt in Gang bringen, mit einem Antrieb aus Ballonluft. Dazu benötigen wir sehr viele Ballons und ein ideales Verhältnis von Antriebsluft und Gewicht.


    • Ein Windrad dreht sich, wenn sich ein Wärme abstrahlendes Objekt darunter befindet. Die erwärmte Luft steigt nach oben, Aufwind entsteht und setzt das Windrad in Bewegung. Ob wohl auch Körperwärme Aufwind erzeugen kann?

      Schlagworte: Auftrieb, Luft, Wind, Wärme

    • Wir wollen wissen, was die Luft aus einem Klassenzimmer wiegt. Wir sammeln die Luft in Plastiktüten ein und versuchen sie zu wiegen. Doch das geht schief. Vielleicht klappt es, wenn wir die Luft komprimieren?

      Schlagworte: Gewicht, Luft, Luftdruck

    • Pumpen wir mit einer Luftpumpe Luft in einen Ball, entsteht ein hoher Druck in der Pumpe, denn die Luft wird beim Pumpen komprimiert. Diese Druckluft wollen wir nutzen, um ein Auto zum Fahren zu bringen.

      Schlagworte: Luft, Luftdruck, Pumpe

    • Ein langes, schweres Stahlrohr soll zum Wippen gebracht werden. Die erlaubten Hilfsmittel sind ein paar Gasbrenner und mehrere Kugeln, die in das Rohr gefüllt werden. Wir erhitzen eine Seite und lassen die andere abkühlen. Wie verhalten sich dabei die Kugeln und kann dieses Verfahren das schwere Stahlrohr in Bewegung setzen?


    • Eine Schatzkiste liegt am Grund eines Schwimmbeckens. Unsere Leute wollen sie bergen. Als Hilfsmittel haben sie nur ein mit Luft gefülltes Kissen zur Verfügung. Kann die Auftriebskraft ihnen vielleicht helfen?

      Schlagworte: Auftrieb, Kraft, Luft, Wasser

    • Was ist ein Jetstream?

      Ein Jetstream ist ein sehr schneller, bandförmiger Westwindstrom, der Windgeschwindigkei-ten von bis zu 500 Kilometern pro Stunde erreichen kann. Sowohl auf der Nord- als auch auf der Südhalbkugel gibt es Westwindströme, insgesamt zwei Jetstreams auf jeder Halbkugel. Die Westwindströmungen auf der Nordhalbkugel beeinflussen maßgeblich unser europäi-sches Wetter. Flugzeuge aus den USA mit dem Ziel Europa nutzen den starken Rückenwind von West nach Ost regelrecht als „Autobahn“. So können die Fluglinien Zeit und Benzin spa-ren. Doch wie kommt es zu dem Phänomen des „Jetstreams“, auch als „Strahlstrom“ be-kannt?

      Der Jetstream, starke Winde in großer Höhe

      Starke Westwindströmungen treten in großen Höhen von 10 Kilometern in der Troposphäre auf. Sie entstehen dort, wo kalte und warme Luftzellen aufeinander treffen. Der Westwind-strom an der Berührungsstelle von Polar- und Ferrelzelle heißt Polarfrontjetstream, die star-ken Winde zwischen Ferrel- und Hadleyzelle nennt man Suptropenjetstream. Unser Wetter in Europa wird am stärksten vom Polarfrontjetstream beeinflusst. Dieser Strahlstrom verläuft zwischen dem 40° und 60° Breitengrad und zählt zur Gruppe der „geostrophischen Winde“. Der Polarfrontjetstream bildet sich infolge globaler Ausgleichsbewegungen zwischen Hoch- und Tiefdruckgebieten. Dabei fließt warme Luft vom Äquator Richtung Nordpol, die durch die Erdrotation nach Osten abgelenkt wird.

      Beeinflusst die Windrichtung: die Corioliskraft

      Für die Ablenkung der Winde durch die Erdrotation ist die Corioliskraft verantwortlich. Sie ist nach dem französischen Wissenschaftler Gaspard Gustave de Coriolis benannt, der dieses Phänomen im Jahr 1835 als erster mathematisch untersuchte. Am Äquator dreht sich die Erde mit 1670 Kilometern pro Stunde nach Osten, in Richtung der Pole nimmt die Geschwin-digkeit ab. Die Luftmassen, die so vom Äquator zum Nordpol strömen, nehmen den Schwung nach Osten mit und bewegen sich somit schneller als die Erdoberfläche weiter nordwärts. Daher führt die Corioliskraft auf der Nordhalbkugel zu einer Rechtsablenkung der Luftmas-sen; auf der Südhalbkugel zu einer Linksablenkung. Außerdem gilt: Je näher die Winde an die Pole herankommen, desto stärker ist die Ablenkung. Die Corioliskraft ist somit dafür verant-wortlich, dass der Polarfrontjetstream Richtung Osten bläst.

      Verantwortlich für unser Klima in Europa: die Rossby-Wellen des Jetstreams

      In Deutschland kommt der Wind oft aus westlicher Richtung, vom Atlantik her. Er bringt feuchte Luft und sorgt für ein gemäßigtes Klima. Auch das verdanken wir einer Besonderheit des Strahlstroms: Der Jetstream ist kein gleichmäßiges Windband, er mäandert. Dabei ent-stehen großräumige Wellen in der Atmosphäre - sogenannte Rossby-Wellen -, in denen die Jetstreams sich um die Erde herum bewegen. Je nachdem wie die Wellen verlaufen, bilden sich Hoch- oder Tiefdruckgebiete. Sie wandern mit dem Strahlstrom von Westen nach Osten und beeinflussen unser Wetter in Europa.


    • Wie entstehen Regen und Hagel und welche verschiedenen Arten von Regen gibt es bei uns in Mitteleuropa?


    • Als Wettermoderator kennt sich Sven Plöger bestens mit Wind aus. Windkanäle, in denen Orkanwindstärken erzeugt werden können, faszinieren ihn. Ob man in so einem Windkanal wohl „fliegen“ kann? Sven Plöger probiert es aus.

      Schlagworte: Fliegen, Luft, Turbine

  • Luftdruck

  • Luftkissenfahrzeug

  • Lupe

    • Kann man mit Eis Feuer machen?

      Dass man mit einer Lupe Feuer machen kann, ist bekannt. Dabei wird das Sonnenlicht im Brennpunkt der Linse gebündelt, das Papier dahinter fängt durch die entstandene Hitze Feuer. Aber funktioniert das Ganze auch mit einer Linse aus Eis? Denn: Feuer und Eis sind doch Gegensätze. Planet Schule macht das Experiment mit einer selbst gebauten Eis-Linse.

      Im Brennpunkt der Linse entsteht Feuer

      Folgende „Zutaten“ sind für das Feuer-Eis-Experiment notwendig: eine Lupe aus Eis, brennbares Material wie Papier, trockene Äste oder Blätter und natürlich Sonnenlicht. Ohne das geht gar nichts. Hält man ein Lupenglas zwischen Sonne und ein Stück Zeitungspapier, so fällt ein heller Fleck auf dem Papier auf. Mithilfe der Lupe werden die Sonnenstrahlen konzentriert und gleichzeitig wird Hitze gesammelt. Die Energiedichte des Lichtes steigt. Und noch etwas fällt auf: Verändert man die Entfernung von Lupe und Papier, wird der helle Lichtfleck je nachdem größer oder kleiner. Erst wenn der Punkt sehr klein ist, beginnt die Zeitung zu qualmen. Dieser Punkt heißt Brennpunkt. Hier kreuzen sich die Sonnenstrahlen, die parallel zur optischen Achse einfallen. Die Linse „verbiegt“ quasi das parallel einfallende Sonnenlicht.

      Ohne Lupe, Brennglas oder Linse kein Feuer

      Doch warum muss es eine Lupe sein? Vielleicht tut es auch ein durchsichtiges Glas? Die Antwort lautet nein. Das Glas muss eine besondere Form aufweisen: In der Mitte ist es dicker als am Rand. Diese Wölbung der Linse ist der Grund dafür, dass Sonnenstrahlen gebündelt werden können. In der Optik heißt eine solche Linse auch Sammellinse oder Konvexlinse. Oft spricht man auch von Brennglas, da das Glas einen Brennpunkt liefert. Linsengläser sind beispielsweise Lupen, Brillengläser, Objektive oder Ferngläser. Fest steht: Damit Feuer entstehen kann, muss die Linse durchsichtig und gekrümmt sein. Aber muss sie auch zwingend aus Glas bestehen? Oder kann man auch mit einer Linse aus Eis Feuer machen?

      Das Experiment: Feuer machen mit einer Lupe aus Eis

      Für das Experiment wird ein 200 Kilo schwerer Eisblock mit einer Kettensäge und einem Schaber bearbeitet. Nach einer Stunde ist aus dem Eisblock eine gigantische Lupe aus gefrorenem Wasser entstanden. Gut poliert wird sie schräg gegen die Sonne gestellt, das Brennmaterial dahinter positioniert, der Brennpunkt justiert. Und tatsächlich: Nach kurzem Zündeln fängt das Brennmaterial Feuer. Eis taugt folglich genauso wie Glas als Material für eine Linse.

      Tipps für das Experiment mit Brennglas und Feuer

      Wer mit einer Lupe selber ein Feuer machen möchte, der sollte Folgendes beachten. Ein sonniger Tag, am besten um die Mittagszeit, ist Voraussetzung. Bei wolkenverhangenem Himmel funktioniert das Experiment nicht. Außerdem darf es nur im Freien und auf nicht brennbarem Boden durchgeführt werden. Das Experiment funktioniert schneller mit Zeitungspapier, da dieses schon bei 175 Grad brennt, Holz hingegen erst ab 280 Grad. Wie schnell ein Feuer mit einer Linse entfacht wird, hängt also von der Energiedichte ab, die das Brennglas liefert. Außerdem sind die Zündtemperatur des Materials sowie die Wärmeleitfähigkeit am Brennfleck entscheidend.

       

      Schlagworte: Brennpunkt, Licht, Linse, Lupe

  • Luther, Martin

    • Was waren die Bauernkriege?

      In der Zeit der Reformation tobten die Bauernkriege in Süddeutschland. Die Bauern kämpften ab 1524 gegen den Adel, der sie unterdrückte. Sie forderten mehr Rechte und die Aufhebung der Leibeigenschaft. Nicht zufällig fielen die Bauernaufstände in die Zeit der Reformation. Martin Luther hatte mit seinen Schriften den geistigen Nährboden bereitet.

      Das Los der Bauern: Frondienst und Armut

      Die Bauern im 16. Jahrhundert hatten es nicht leicht: Sie machten mit rund 80 Prozent die größte Bevölkerungsgruppe im Mittelalter aus. Sie finanzierten den Adel und die Geistlichen mit hohen Abgaben. Die Bauern besaßen kein Eigentum, viele hungerten und waren Leibeigene ihrer Fronherren. Missernten und ein schnelles Anwachsen der Bevölkerung nach der großen Pest um 1450 verschärften die ohnehin angespannte Situation.

      Der Einfluss der Reformation auf die Bauernkriege

      Der Konflikt zwischen Herrschenden und Bauern entflammte, als Martin Luther die Reform der Kirche forderte. Seine Worte in der Schrift „Von der Freyheith eines Christenmenschen“ verstanden die Bauern als Signal, um auch für ihre Freiheit zu kämpfen. Sie bildeten kleine Gruppen, so genannte „Haufen“, und schmiedeten ihre Werkzeuge zu Waffen um. Diese Drohgebärden brachten den Adel in Rage: Unter dem Heerführer Georg Truchsess von Waldburg-Zeil formierte sich ein hochgerüstetes Söldnerheer gegen die Aufständischen.

      Bauern fordern Menschenrechte in 12 Artikeln

      Was die Bauern nicht wussten: Luther stand nicht auf ihrer Seite. Ihm ging es um die religiöse Freiheit der Menschen im Jenseits, nicht auf Erden. Dies sah der Schweizer Reformator Ulrich Zwingli anders. Für ihn stellte die Bibel die Grundlage für ein christliches Leben auf Erden dar. Damit unterstützte er die Forderungen der Bauern nach besseren Lebensbedingungen. Die Bauern wussten um die militärische Überlegenheit der Söldnerheere. Deshalb bemühten sich Vertreter der „Haufen“ zunächst ihre Forderungen mit Worten durchzusetzen. Im März 1525 verfassten sie in Memmingen eine Schrift und benannten in 12 Artikeln ihre Forderungen.

      Der Bauernkrieg in Süddeutschland, ein ungleicher Kampf

      Doch der Adel reagierte mit Ablehnung. Eine gewaltsame Auseinandersetzung war unausweichlich. Am 16. April 1525 töteten aufständische Bauern in Weinsberg den Grafen Ludwig von Helfenstein mit seinen Begleitern. Das war der Auftakt zu blutigen Auseinandersetzungen in zahlreichen Regionen Süddeutschlands. Hatten die Aufstände am Hochrhein begonnen, zogen sie sich bis 1526 bis nach Thüringen, ins Elsass und zu den Alpenländern hin. Da die „Haufen“ der Bauern der Ausrüstung und der Organisation der Heere nichts entgegenzusetzen hatten, siegten letztendlich die Kanonen. Etwa 70.000 Bauern starben im Kampf für ein besseres Leben.