Alle Videos nach Fächern

F
I
J
K
O
Q
U
V
W
X
Y
Z


  • Naturphänomene

    • Wir schicken einen Rennwagen mit Elektromotor an den Start - betrieben mit Batterien aus Zitronensaft und Kupfer- oder Magnesium-Elektroden. Eine Strecke von 200 Metern soll er bewältigen. Ob das zu schaffen ist?

    • Eine Batterie lässt sich aus Kohle, Metall, Papier, Flüssigkeit und Draht basteln. Unser Team belädt einen Anhänger mit solchen Batterien, um damit eine richtige Lokomotive anzutreiben. Die Lok ist zwar klein aber richtig schwer. Kann sie mit diesem Antrieb auf große Fahrt gehen?

    • Ein Solarballon in Form eines Wals: Wenn die Sonne ihn erwärmt hat, soll er mit Ballonfahrerin aufsteigen. Wird die Kraft der Sonne dafür reichen?

    • Ein schwerer japanischer Sumoringer wird an einem mit Deckel versehenen Glas in die Höhe gezogen. Die Kraft des Luftdrucks entscheidet, ob der Ringer schwebt oder abstürzt.

    • An den Seiten eines Buches ziehen wir einen Sumoringer in die Höhe. Die Reibungskräfte der ineinander verschränkten Buchseiten sollen ihn in der Luft halten. Wird er schweben oder zu Boden stürzen?

    • Pumpen wir mit einer Luftpumpe Luft in einen Ball, entsteht ein hoher Druck in der Pumpe, denn die Luft wird beim Pumpen komprimiert. Diese Druckluft wollen wir nutzen, um ein Auto zum Fahren zu bringen.

      Schlagworte: Luft, Luftdruck, Pumpe
    • Wenn sich ein gedehntes Gummiband wieder zusammen zieht, übt es Kraft aus - Spannkraft. Mit der Spannkraft gebündelter Gummibänder wollen wir einen Propeller starten: Als Erstes gilt es, Tausende von Gummibändern zusammenzuknüpfen…

    • Wer etwas Schweres anheben möchte, braucht starke Muskeln – oder einen Flaschenzug. Was aber, wenn ein Klavier zu stemmen ist und nur ein einzelner Mann am Zugseil steht? Wird er es schaffen, das Klavier hochzuziehen, nur mit Hilfe mehrerer Flaschenzüge?

      Schlagworte: Gewicht, Kraft, Seil, Ziehen
    • Der Schal einer Dame klemmt fest unter dem Rad eines Lastwagens. Kann ein einzelner Mann, nur mit Hilfe eines Hebels, einen so gewichtigen Wagen anheben?

    • Was passiert eigentlich, wenn ein 139 Meter hoher Stahlturm von der Sonne erwärmt wird? Mit Thermometern messen wir, wie sich die Temperatur am Turm im Laufe eines Tages verändert. Außerdem benutzen wir ein spezielles Messgerät, um jeweils die genaue Höhe des Turms zu ermitteln.

    • Wir untersuchen eine Flüssigkeit mit erstaunlichen Eigenschaften. Wird sie unter Druck gesetzt, fließt sie nicht davon, sondern verfestigt sich, wird dann aber gleich wieder flüssig. Wir lassen mehrere Sportler ein Becken durchqueren, das mit dieser Flüssigkeit gefüllt ist. Läufer, Weitspringer und Turner müssen heftigen starken Druck ausüben; nur dann kann das Flüssige fest werden.

    • Unterschiedliche Magnetpole ziehen sich an, gleiche Pole stoßen sich ab. Diese Abstoßungskraft werden wir nutzen: Wir wollen eine mit Magneten bestückte Platte über einer zweiten, ebenso bestückten, Platte schweben lassen – wie einen fliegenden Teppich.

    • Eine Glühbirne soll mit Hilfe des Erdmagnetfeldes zum Leuchten gebracht werden. Dazu schwingen unsere Leute Drahtseile entlang der Magnetbahnen. Können wir Kräfte der magnetischen Pole der Erde so nutzen, dass unsere Glühbirne angeht?

    • Wir erhitzen Wasser in einem verschlossenen Rohr: Großer Druck entsteht. Wenn wir das Rohr öffnen, wird das Wasser zu Dampf und dehnt sich explosionsartig aus. Ob wir mit Hilfe einer solchen Dampfexplosion einen Ball aus dem Rohr herausschießen können?

    • Professionelle Sänger und Sportler versuchen mit bloßer Stimmgewalt ein Glas zerspringen zu lassen. Ob sie das schaffen?

      Schlagworte: Glas, Klang, Stimme, Ton, Tongenerator
    • Als Wettermoderator kennt sich Sven Plöger bestens mit Wind aus. Windkanäle, in denen Orkanwindstärken erzeugt werden können, faszinieren ihn. Ob man in so einem Windkanal wohl „fliegen“ kann? Sven Plöger probiert es aus.

      Schlagworte: Fliegen, Luft, Turbine
    • Wir wollen mit einer schönen Unbekannten telefonieren. Die Ausrüstung: zwei Becher und eine sehr lange Schnur. Die Verbindung kommt nur zustande, wenn Becher und Schnur die Stimmen übertragen können. Und bis es soweit ist, geht so einiges schief.

    • Dass man mit einer Lupe Feuer machen kann, ist bekannt. Dabei wird das Sonnenlicht im Brennpunkt der Linse gebündelt, das Papier dahinter fängt durch die entstandene Hitze Feuer. Aber funktioniert das Ganze auch mit einer Linse aus Eis? Denn: Feuer und Eis sind doch Gegensätze. Planet Schule macht das Experiment mit einer selbst gebauten Eis-Linse.

      Im Brennpunkt der Linse entsteht Feuer

      Folgende „Zutaten“ sind für das Feuer-Eis-Experiment notwendig: eine Lupe aus Eis, brennbares Material wie Papier, trockene Äste oder Blätter und natürlich Sonnenlicht. Ohne das geht gar nichts. Hält man ein Lupenglas zwischen Sonne und ein Stück Zeitungspapier, so fällt ein heller Fleck auf dem Papier auf. Mithilfe der Lupe werden die Sonnenstrahlen konzentriert und gleichzeitig wird Hitze gesammelt. Die Energiedichte des Lichtes steigt. Und noch etwas fällt auf: Verändert man die Entfernung von Lupe und Papier, wird der helle Lichtfleck je nachdem größer oder kleiner. Erst wenn der Punkt sehr klein ist, beginnt die Zeitung zu qualmen. Dieser Punkt heißt Brennpunkt. Hier kreuzen sich die Sonnenstrahlen, die parallel zur optischen Achse einfallen. Die Linse „verbiegt“ quasi das parallel einfallende Sonnenlicht.

      Ohne Lupe, Brennglas oder Linse kein Feuer

      Doch warum muss es eine Lupe sein? Vielleicht tut es auch ein durchsichtiges Glas? Die Antwort lautet nein. Das Glas muss eine besondere Form aufweisen: In der Mitte ist es dicker als am Rand. Diese Wölbung der Linse ist der Grund dafür, dass Sonnenstrahlen gebündelt werden können. In der Optik heißt eine solche Linse auch Sammellinse oder Konvexlinse. Oft spricht man auch von Brennglas, da das Glas einen Brennpunkt liefert. Linsengläser sind beispielsweise Lupen, Brillengläser, Objektive oder Ferngläser. Fest steht: Damit Feuer entstehen kann, muss die Linse durchsichtig und gekrümmt sein. Aber muss sie auch zwingend aus Glas bestehen? Oder kann man auch mit einer Linse aus Eis Feuer machen?

      Das Experiment: Feuer machen mit einer Lupe aus Eis

      Für das Experiment wird ein 200 Kilo schwerer Eisblock mit einer Kettensäge und einem Schaber bearbeitet. Nach einer Stunde ist aus dem Eisblock eine gigantische Lupe aus gefrorenem Wasser entstanden. Gut poliert wird sie schräg gegen die Sonne gestellt, das Brennmaterial dahinter positioniert, der Brennpunkt justiert. Und tatsächlich: Nach kurzem Zündeln fängt das Brennmaterial Feuer. Eis taugt folglich genauso wie Glas als Material für eine Linse.

      Tipps für das Experiment mit Brennglas und Feuer

      Wer mit einer Lupe selber ein Feuer machen möchte, der sollte Folgendes beachten. Ein sonniger Tag, am besten um die Mittagszeit, ist Voraussetzung. Bei wolkenverhangenem Himmel funktioniert das Experiment nicht. Außerdem darf es nur im Freien und auf nicht brennbarem Boden durchgeführt werden. Das Experiment funktioniert schneller mit Zeitungspapier, da dieses schon bei 175 Grad brennt, Holz hingegen erst ab 280 Grad. Wie schnell ein Feuer mit einer Linse entfacht wird, hängt also von der Energiedichte ab, die das Brennglas liefert. Außerdem sind die Zündtemperatur des Materials sowie die Wärmeleitfähigkeit am Brennfleck entscheidend.

       

      Schlagworte: Brennpunkt, Licht, Linse, Lupe
    • Ein Windrad dreht sich, wenn sich ein Wärme abstrahlendes Objekt darunter befindet. Die erwärmte Luft steigt nach oben, Aufwind entsteht und setzt das Windrad in Bewegung. Ob wohl auch Körperwärme Aufwind erzeugen kann?

      Schlagworte: Auftrieb, Luft, Wind, Wärme
    • Ein Lied zum Anfassen und immer wieder neu Abspielen ist das Ziel dieses Experiments. Dazu gießen wir die Vibration der Töne in eine Form. Es entsteht eine Welle. Mit einem Wagen, einer selbstgebauten Lautsprecherbox und einer kleinen Nadel wollen wir dieser Welle wieder die ursprünglichen Töne entlocken.

    • Über einen langen Schlauch sollen zweitausend Liter Wasser von einem Wassertank in einen anderen gelangen und dabei eine Höhe von zehn Metern überwinden. Ob das gelingt?

    • Mit hohem Wasserdruck und einem scharfen Wasserstrahl rücken wir einem Apfel auf die Pelle. Mal sehen, ob er sich zerschneiden lässt.

    • Aus kreisförmig angeordneten Spiegeln bauen wir einen Solarkocher. Die Spiegel bündeln die Sonnenstrahlen auf den Boden einer Pfanne. Ob sich darin ein Steak braten lässt?

    • Ein Team von Radprofis will genügend Strom erzeugen, um ein Karussell in Schwung zu bringen. Ob das mit reiner Muskelkraft gelingt?

    • Wir wollen ein 100 Kilogramm schweres Gefährt in Gang bringen, mit einem Antrieb aus Ballonluft. Dazu benötigen wir sehr viele Ballons und ein ideales Verhältnis von Antriebsluft und Gewicht.

    • Ein langes, schweres Stahlrohr soll zum Wippen gebracht werden. Die erlaubten Hilfsmittel sind ein paar Gasbrenner und mehrere Kugeln, die in das Rohr gefüllt werden. Wir erhitzen eine Seite und lassen die andere abkühlen. Wie verhalten sich dabei die Kugeln und kann dieses Verfahren das schwere Stahlrohr in Bewegung setzen?

    • Viele Menschen wackeln nervös mit dem Knie. Wir wollen die Energie dieser Bewegung nutzen, um 10 000 Leuchtdioden zu betreiben. Ein kleines Plättchen, das wir an den Knien unserer Testpersonen befestigen, soll uns dabei helfen.

    • Einen Elektromagneten selbst zu bauen, ist kein Problem. Aber kann so ein Magnet auch das Gewicht eines erwachsenen Mannes halten?

    • Ebbe und Flut sind regelmäßig wiederkehrende Wasserbewegungen der Ozeane. Die Ebbe bezeichnet den Zeitraum, in dem das Wasser sinkt, die Flut die Spanne, in der das Wasser steigt. Dies geschieht im Rhythmus von 12 Stunden und 25 Minuten. Dabei senken und heben sich die Ozeane um bis zu 20 Meter. In Deutschland kann man das Phänomen der Gezeiten besonders an den Küsten beobachten: An der Nordsee gibt es innerhalb eines Tages zweimal Hoch- und zweimal Niedrigwasser. Den in Metern gemessenen Unterschied zwischen Hoch- und Niedrigwasser bezeichnet man als Tidenhub.

      Der Mond verursacht Ebbe und Flut

      Der Mond bestimmt mit seiner anziehenden Wirkung auf die Erde die Gezeiten. Dabei wirkt der Mond wie ein Magnet und zieht das Wasser von der Erde weg. Auf der mondzugewandten Seite der Erde entsteht dadurch ein Flutberg, ebenso wie auf der mondabgewandten Seite. Beide Flutberge sind etwa einen halben Meter hoch. Dazwischen liegen zwei Ebbtäler. Innerhalb eines Tages dreht sich die Erde unter den beiden Flutbergen hindurch.

      Anziehungskraft und Fliehkraft bestimmen die Gezeiten

      Verantwortlich für die Entstehung von Ebbe und Flut sind zwei Kräfte: die Gravitationskräfte des Mondes und die Fliehkraft. Beide Kräfte wirken im Zusammenspiel mit dem Erde-Mond-System, das um einen gemeinsamen Schwerpunkt im Inneren der Erdkugel rotiert: Auf der mondzugewandten Seite wirkt die Anziehungskraft des Mondes stärker, auf der abgewandten Seite dominiert die Fliehkraft. Dadurch entstehen auf beiden Seiten der Erde Flutberge.

      Einfluss der Sonne

      Je nach ihrem Stand kann auch die Sonne das Spiel der Gezeiten beeinflussen und die Kraft des Mondes verstärken. Bei Voll- und Neumond wirken Sonne und Mond zusammen: die Folge, es kommt zu starkem Hochwasser, einer so genannten Springtide. Bei Halbmond sind Ebbe und Flut weniger stark ausgeprägt, da die Kräfte von Sonne und Mond in unterschiedliche Richtungen weisen. Dieses Phänomen des „Niedrigwassers“ nennt man Nipptide.

    • Warum wird es jeden Tag hell und jede Nacht dunkel? Und warum sind die Tage bei uns im Sommer länger als im Winter?

    • Der Regenwurm führt ein Leben im Verborgenen. Man bekommt ihn nur selten zu Gesicht. Und wenn, dann meistens – wie der Name schon sagt – bei Regen. Aber eigentlich fühlt er sich nur unterirdisch so richtig wohl. Denn dort – im Boden - ist sein Zuhause. Aber was macht so ein Regenwurm eigentlich den lieben langen Tag und warum ist er so wichtig für fruchtbaren Boden?

    • Ein Bumerang fliegt von selbst wieder zurück – meistens jedenfalls. Wie müssen wir ihn werfen und wie muss er beschaffen sein, damit das klappt? Wir lassen ein extragroßes Exemplar anfertigen, um das Geheimnis des Bumerangs zu lüften.

    • Wie kommt es, dass wir den Mond nicht immer gleich wahrnehmen, dass er sich zum Beispiel manchmal als Neumond, manchmal als Vollmond zeigt? Was haben Sonne und Erde damit zu tun? Das Video erklärt die Zusammenhänge.

    • Die Stimmen von kleinen Jungen und erwachsenen Männer klingen sehr verschieden. Das liegt am Stimmbruch, der in der Pubertät stattfindet. Danach klingt die männliche Stimme dann viel tiefer. Aber was genau passiert eigentlich in dieser Phase und was "bricht" beim Stimmbruch?

    • Was hat das Nördlinger Ries mit der Mondmission zu tun?

      An der Grenze zwischen Baden-Württemberg und Bayern liegt das Nördlinger Ries. Die kreisrunde Region mit einem Durchmesser von etwa 25 Kilometern entstand vor 15 Millionen Jahren. War es ein Vulkanausbruch? Über lange Zeit rätselten Wissenschaftler über die Entstehung dieses imposanten Kraters. 1970 bekam das Ries hohen Besuch aus Amerika: Astronauten der Mondmission „Apollo 14“ nahmen die Region genauer unter die Lupe. Aber warum?

    • Parabolantennen empfangen Radiowellen aus den Tiefen des Alls. Um herauszufinden, wie das funktioniert, lassen wir Bälle in einen Parabolspiegel fallen.

    • Was ist der genetische Code?

      Über sieben Milliarden Menschen leben heute auf der Erde und jeder einzelne von Ihnen ist ein Unikat. Wie kann das sein? Der „genetische Code“ macht es möglich! In diesem Code sind die Informationen gespeichert, die der Körper braucht, um Proteine - die Grundbausteine des Lebens - zu bilden. Eine virtuelle Reise ins Innere einer Zelle zeigt die wichtigsten Schritte vom genetischen Code zum Protein und verdeutlicht das faszinierende Zusammenspiel von DNA, RNA und Enzymen.

    • Das Steinheimer Becken in Baden-Württemberg zählt zu den bedeutendsten Fossilien-Fundstätten weltweit. Eine Besonderheit ist der Steinheimer Schneckensand – Sandschichten, in denen Schneckengehäuse gefunden wurden. Die Schnecken veränderten über die Zeit ihre Form und passten sich perfekt ihrer Umwelt an - ein Beweis für die Evolutionstheorie von Charles Darwin.

      Das Steinheimer Becken entstand durch einen Meteoriteneinschlag

      Das Steinheimer Becken in Baden-Württemberg entstand durch einen Meteoriteneinschlag vor (rund) 14 bis 15 Millionen Jahren. Ein gigantischer Gesteinsbrocken hinterließ einen Krater mit Zentralhügel von etwa vier Kilometern Durchmesser. Hier wurden auch erstmals besondere Gesteine, sogenannte Strahlenkalke gefunden. Der Steinheimer Einschlagskrater, auch Impaktkrater genannt, füllte sich im Laufe der Zeit mit Süßwasser, so dass ein rund 80 Meter tiefer, kreisrunder See entstand. Am Ufer des Sees tummelte sich die damals heimische Tierwelt, aber auch im See lebten viele Pflanzen und Tiere.

      Das Steinheimer Becken – eine weltweit bekannte Fundstätte für Fossilien

      Besonders häufig kamen in dem Kratersee kleine Süßwasserschnecken vor. Ihre Schneckenhäuser kann man heute noch in den Sandsedimenten des Steinheimer Beckens finden. Der See verlandete im Laufe der Zeit und zählt heute zu den interessantesten Fossilienfundstellen weltweit. Außer den typischen kleinen Schnecken haben Forscher Überreste von über 90 Pflanzenarten, 50 Vogelarten und über 55 verschiedenen Säugetieren wie Gabelhirschen, Nashörnern oder Raubtieren in der Pharionschen Kalksandgrube bei Steinheim gefunden.

      Der Steinheimer Schneckensand – eine kleine, biologische Evolutionsgeschichte

      Die Schneckengehäuse, die im Steinheimer Becken gefunden wurden, sind eine Besonderheit. Wissenschaftler stellten fest: Die Gehäuseformen in den jüngeren Sedimentschichten hatten sich gegenüber denen in den älteren Sedimentschichten langsam verändert. Über tausende Schneckengenerationen hinweg entwickelten sich – durch Mutation und Auslese – verschiedene Arten aus der ursprünglichen Art. So konnten sich die Steinheimer Schnecken über eine Millionen Jahre lang, solange der See existierte, perfekt an ihre Umwelt anpassen und im See überleben. Der Paläontologe Franz Hilgersdorf entdeckte 1866 zum ersten Mal die allmähliche Formveränderung der Schneckengehäuse. Damit lieferte er den Beweis für die Darwin‘sche Evolutionsgeschichte am Beispiel des Steinheimer Schneckensandes.

    • Treibhausgase in der Atmosphäre nehmen zu, die Erde wärmt sich immer mehr auf. Woher kommt das?

    • Auf der schwäbischen Alb grasen Tiere, die wie Auerochsen und Urpferde aussehen. Diese sind allerdings schon längst ausgestorben. Was sind das also für Tiere, die heute dort weiden und ihrer urigen Verwandtschaft zum Verwechseln ähnlich sehen? Und welche wichtige Rolle spielen sie bei einem Artenschutzprojekt?

    • Können wir Töne unter Wasser hören? Pflanzt sich der Schall dort genauso fort wie in der Luft? Ein Versuch auf dem Meer soll Klarheit bringen. Wir lassen einen Lautsprecher ins Wasser, der einen Ton sendet und ein Mikrofon, das diesen Ton empfangen soll. Der Abstand zwischen beiden beträgt mehr als einen Kilometer. Mal hören, was passiert!

    • Der Wattwurm ist das „heimliche Wappentier“ des Wattenmeeres. Bei einem Experiment im Versuchslabor zeigt er, was er mit dem Wattboden macht und warum er so wichtig für das Ökosystem Wattenmeer ist.

    • Wir wollen wissen, was die Luft aus einem Klassenzimmer wiegt. Wir sammeln die Luft in Plastiktüten ein und versuchen sie zu wiegen. Doch das geht schief. Vielleicht klappt es, wenn wir die Luft komprimieren?

      Schlagworte: Gewicht, Luft, Luftdruck
    • Wasserdruck hat enorme Kräfte. Wir testen die Kraft des Wassers mit einem Motorrad, das dem Druck von 10 000 Meter Tiefe ausgesetzt wird.

    • Das „Mer de Glace“ ist der größte Gletscher Frankreichs und ein beliebtes Ziel für Touristen. Gletscher faszinieren die Menschen schon seit jeher. Aber wie entstehen die imposanten Eisgiganten eigentlich? Und wieso sind sie ständig in Bewegung?

      Schlagworte: Eis, Frankreich, Gletscher
    • Schall braucht ein Medium, um sich auszubreiten. Üblicherweise ist das Luft - aber wie genau funktioniert das eigentlich? Und was passiert im Vakuum? Das erklären die Wissenschafts-Comedians.

    • Wie entstand der Kaiserstuhl?

      Der Kaiserstuhl in der Oberrheinebene im Südwesten Baden-Württembergs ist ein kleines Mittelgebirge Aber wie entstand der Kaiserstuhl eigentlich? Eine Zeitreise mehr als 40 Millionen Jahre zurück zeigt die Entwicklung dieser Region, die eine bewegte geologische Geschichte hat.

    • Wo heute der Rhein durch die Ebene zwischen Schwarzwald und Vogesen fließt, rumorte es vor 65 Millionen Jahren gewaltig in der Erde. Es war der Beginn eines spannenden geologischen Prozesses, durch den der Oberrheingraben entstand. Was ging da genau vor sich?

    • Wie entstanden die Höhlen der schwäbischen Alb?

      Die Schwäbische Alb gilt als eine der höhlenreichsten Regionen in Europa. Weit über 2000 Höhlen sind bekannt und einige der schönsten sind für Besucher zugänglich. Aber wie entstanden die Höhlen eigentlich?

    • Wie entsteht ein Edelstein?

      Edelsteine sind kostbar und faszinierend. Doch wie entstehen sie? Am Beispiel eines „Amethysten“ zeigt der Film, welche chemischen Prozesse über einen Zeitraum von zehntausenden von Jahren dazu geführt haben, dass sich dieser begehrte, violett glänzende, Stein gebildet hat.

    • Mit etwas Geduld und Glück kann man in einem Kalksteinbruch auf der schwäbischen Alb Fossilien finden. Zum Beispiel versteinerte Gehäuse oder Skelette von Meerestieren. Aber - ein Meer auf der schwäbischen Alb? Wie kann das sein? Und wie wird so ein Meerestier eigentlich zum Fossil?

    • Wenn ein Blitz am Himmel zu sehen ist, sind meist auch Donner und Regen nicht weit - ein Gewitter ist im Anzug. Wie kommt es zu Blitz und Donner? Warum regnet es? Eine Animation zeigt die physikalischen Zusammenhänge.

    • Tropische Wirbelstürme entstehen über den Ozeanen durch die Verdunstung von warmem Meereswasser mithilfe der Corioliskraft. Sie erreichen Windgeschwindigkeiten von bis zu 250 Kilometer pro Stunde und verursachen nicht selten Überschwemmungen und Sturmfluten.

      Tropische Wirbelstürme bilden sich über den Ozeanen

      Ob Hurrikan, Taifun oder Zyklon – eines haben tropische Wirbelstürme trotz ihrer unterschiedlichen Bezeichnung in den verschiedenen Erdteilen gemeinsam: Die Stürme entstehen im Bereich der Tropen über den Ozeanen. Dabei verdunstet Meerwasser, so dass feuchtwarme Luft schnell nach oben steigen kann. Heftige Wirbelstürme können Schäden in Millionenhöhe verursachen und fordern mit ihrer gewaltigen Zerstörungskraft nicht selten viele Todesopfer, vor allem in den tropischen Küstenregionen.

      Tropische Wirbelstürme sind abhängig von Wassertemperatur und Corioliskraft

      Tropische Wirbelstürme können nur unter ganz bestimmten Bedingungen entstehen. Dazu muss die Temperatur der Meeresoberfläche mindestens 27 Grad Celsius betragen und die Corioliskraft mitwirken. Die Corioliskraft wird durch die Drehung der Erde erzeugt und lenkt die Luftmassen ab: auf der Nordhalbkugel nach rechts, also nach Osten, auf der Südhalbkugel nach links, also nach Westen. Treffen diese Faktoren - warmes Meerwasser und Corioliskraft - zusammen, kann daraus bei bestimmten Bedingungen ein Wirbelsturm entstehen. Das funktioniert aber nur innerhalb der tropischen Zone auf beiden Erdhalbkugeln - zwischen dem 5. und dem 20. Breitengrad. Am Äquator selbst sind die Ozeane zwar warm genug, aber die Corioliskraft fehlt. An den Polen ist es umgekehrt: Hier ist die Corioliskraft stark, jedoch das Meerwasser zu kalt.

      Wirbelstürme entstehen durch Verdunstungen an der Meeresoberfläche

      Ein tropischer Wirbelsturm entsteht immer gleich: Zunächst verdunstet Wasser an der Meeresoberfläche, die feuchtwarme Luft steigt auf und kondensiert in der Höhe. Durch die Kondensation entstehen Cumulus-Wolken, die mit ihrer Verdunstungswärme Energie für den Sturm liefern. Die Folge: Die Windgeschwindigkeit nimmt zu, es entstehen Gewitterwolken, die ringförmig angeordnet sind und durch die Corioliskraft zu rotieren beginnen. Diese spiralförmige Form eines Wirbelsturms bezeichnet man auch als Augenwall (eyewall) – hier treten die höchsten Windgeschwindigkeiten und die stärksten Niederschläge auf. Die sich drehenden Luftmassen können bis zu 250 Kilometer pro Stunde erreichen. Im Zentrum des Sturms, im sogenannten Auge (eye), ist es dagegen nahezu windstill. Hier herrscht ein Unterdruck, durch den feuchtwarme Meeresluft nachgesaugt wird. Diese steigt spiralförmig in den Eyewall und liefert weitere Energie für Wirbelsturm.

      Folgen tropischer Wirbelstürme

      Tropische Wirbelstürme entfalten bei zunehmender Stärke zerstörerische Kräfte. Auf See sorgen sie für hohen Seegang und gefährden die Schifffahrt. An Land zerstören Hurrikane, Taifune und Co. mit ihren enormen Windgeschwindigkeiten Gebäude, Straßen, Häfen. Hinzu kommen oft Schäden durch Starkregen, Überschwemmungen und Sturmfluten an den Küsten. Zum Glück besteht heutzutage mithilfe von Wettersatelliten und modernster Technik die Möglichkeit, tropische Wirbelstürme und ihren Zugweg genau zu bestimmen und die Bevölkerung rechtzeitig zu warnen.

    • Kalktuff ist ein besonderes Gestein. Luftig, leicht, aber doch fest. Wegen seiner Belastbarkeit und Witterungsbeständigkeit wurde Kalktuff von der schwäbischen Alb früher häufig als Baustoff verwendet. Aber wie entsteht Kalktuff eigentlich und welche Rolle spielt das Wetter dabei? Wetterexperte Sven Plöger weiß die Antwort.

    • Wie entstehen Regen und Hagel und welche verschiedenen Arten von Regen gibt es bei uns in Mitteleuropa?

    • Welchen Gesetzen folgen fallende Kugeln? Unser Team beobachtet das Verhalten verschiedener Kugeln und beschließt, mit den gewonnenen Erkenntnissen einen Großversuch zu starten.

    • Wie findet man Trüffel?

      Hauchdünn über ein Pastagericht geraspelt... so liebt sie der Feinschmecker! Trüffelpilze gelten als Delikatesse und sind nichts für den schmalen Geldbeutel. Das Kilogramm kann bis zu mehrere hundert Euro kosten. Nicht nur der Anbau, sondern vor allem auch die Suche nach den Edelpilzen gestaltet sich als echte Herausforderung.

    • Die Wärme aus der Erde könnte eine Alternative zu fossilen Rohstoffen sein, denn diese werden knapper und teurer und verschärfen durch die Abgase den Treibhauseffekt. Geothermiekraftwerke nutzen heißes Wasser aus tief gelegenen Gesteinsschichten und erzeugen damit elektrischen Strom. Sie arbeiten nach dem Prinzip der Kraft-Wärme-Kopplung, d.h. sie produzieren Strom und heizen auch per Fernwärme. Wie das genau geht, zeigt der Film mithilfe einer Animation.

    • Eine Schatzkiste liegt am Grund eines Schwimmbeckens. Unsere Leute wollen sie bergen. Als Hilfsmittel haben sie nur ein mit Luft gefülltes Kissen zur Verfügung. Kann die Auftriebskraft ihnen vielleicht helfen?

      Schlagworte: Auftrieb, Kraft, Luft, Wasser
    • Wir wollen wissen: Verändern sich Töne, wenn sie beschleunigt werden – wenn die Tonquelle also zum Beispiel in einem Flugzeug mitfliegt? Oder ist das eine Frage des Standorts? Unser Team gibt alles, um diese bewegende Frage zu beantworten.

    • Die Erde besteht aus verschiedenen Schichten: aus Erdkruste, Erdmantel, äußerem und innerem Erdkern. Wie dick diese Erdschichten sind, woraus sie bestehen und welche Temperaturen in diesen Schichten herrschen, zeigt eine Animation.

    • Weinbergschnecken brauchen Kalk

      Die Weinbergerschnecke ist die größte einheimische Landschnecke. Sie gehört zur Familie der Schnirkelschnecken und heißt auf Lateinisch Helix promatia. Ihr Markenzeichen ist ein fein straffiertes Schneckenhaus, das bis zu 5 cm groß werden kann. Weinbergschnecken haben es gerne warm; sie leben vorwiegend in Gärten, Hecken oder in lichten Wäldern. Dabei bevorzugen sie Untergründe aus Kalkgestein. Denn Kalk ist lebenswichtig für die Weinbergschnecke: Kalk ist der Baustoff ihres Gehäuses; sie löst ihn direkt mithilfe ihres Schleims aus dem Gestein oder nimmt ihn über die Nahrung auf. Weinbergschnecken vertilgen großen Mengen an Grün, ihre Leibspeise sind jedoch welke Pflanzenteile. Daher richten sie in Gärten kaum Schaden an.

      Tricks zum Überwintern

      Die wärmeliebenden Weinbergschnecken sind besonders im Frühling und Sommer aktiv. Bei bewölktem Himmel und nach ausgiebigen Regenfällen sind sie in ihrem Element. Doch im Herbst, wenn die Tage kürzer werden, treffen die großen Landschnecken Vorkehrungen für den Winter. An einer windgeschützten Stelle gräbt die Weinbergschnecke ein Loch und buddelt sich ein. Dann bereitet die Schnecke sich selbst vor: Sie sondert aus den Drüsen ihres Mantels ein kalkhaltiges Sekret ab. Mit diesem Sekret bildet sie einen luftdurchlässigen Kalkdeckel, mit dem sie ihr Gehäuse von innen verschließt. Allerdings reicht der Kalkdeckel nicht allein, um den frostigen Temperaturen zu trotzen. Die Weinbergschnecke fährt im Winter alle Körperfunktionen und ihren Sauerstoffverbrauch runter. Im Frühling lockt junges Grün-zeug, die Schnecke bricht den Kalkdeckel auf und beginnt ihr neues Lebensjahr. In freier Wildbahn können die größten einheimischen Landschnecken bis zu 20 Jahre alt werden.

      Ein geschütztes Tier

      Die Weinbergschnecke zählt zu den geschützten Tierarten in Deutschland. Warum das so ist, verrät ein Blick auf die Speisekarte exquisiter Restaurants. Weinbergschnecken gelten als Delikatesse. Das Sammeln der großen Landschnecken in der Natur hat dazu geführt, dass die helix promatia fast ausgestorben wäre. Heute steht die Weinbergschnecke unter Naturschutz und darf nur noch von Zuchtbetrieben an die Gastronomie verkauft werden.

      Schlagworte: Schnecken, Schneckenhaus
    • Elektrostatische Ladung und Toner sind entscheidend, damit ein Kopierer kopieren kann. Ob wir elektrostatische Ladung selbst erzeugen und damit ein Poster drucken können?

    • Grenzen der konventionellen Landwirtschaft

      Für die konventionelle Landwirtschaft ist die intensive Nutzung der Böden durch Monokulturen und den Einsatz von Chemie problematisch. Dort, wo moderne Landwirtschaft auf hohe Erträge setzt, sind die Äcker oft ausgelaugt und vertrocknet, das Gleichgewicht der Böden ist zerstört. Die Folge: Die Landwirte setzen immer mehr Pflanzenschutzmittel und Dünger ein, damit die Erträge einigermaßen stabil bleiben. Dadurch verliert der für die Böden so wichtige Humus mit zahlreichen Mikroorganismen und Kleinstlebewesen kontinuierlich an Nährstoffen. Kommen zu den vorhandenen Problemen noch klimatische Schwankungen, beispielsweise lange Trockenperioden, dörren die Böden weiter aus, sind anfälliger für Schädlinge und weniger fruchtbar. Ein Teufelskreis.

      Naturverträglich: Komposttee

      Einige Landwirte machen sich Gedanken, wie man diesen Kreislauf durchbrechen und naturverträglicher wirtschaften kann. Landwirt Michael Reber aus Baden-Württemberg setzt zum Beispiel auf Komposttee. Auch seine Ackerböden sind durch den jahrelangen Einsatz von Pestiziden und synthetischen Düngemitteln ausgedorrt. Der Komposttee ist ein natürlicher Dünger, eine spezielle Mixtur aus Wasser, Kompost und anderen organischen Stoffen. In der Flüssigkeit vermehren sich wichtige Mikroorganismen, die die Pflanzen nicht nur schützen, sondern auch bei ihrer Aufnahme von Nährstoffen unterstützen. Bringt man den Komposttee auf den Äckern aus, regeneriert sich der Boden, Kleinstlebewesen siedeln sich wieder an. Tausendfüßler, Milben, Regenwürmer und anderes Getier sorgen - genauso wie Bakterien, Pilze und Mikroorganismen - dafür, dass der Boden gesund bleibt. Denn in einem humusreichen Boden, können Pflanzen viel besser mit Wasser und Nährstoffen versorgt werden.

      Günstig und self-made

      Der Komposttee hat auch noch weitere Vorteile: Landwirte wie Michael Reber können den biologischen Dünger selbst herstellen und in der Folge den Bodenlebewesen die Arbeit überlassen. Werden diese regelmäßig mit wertvollem Komposttee auf den Anbauflächen gefüttert, sorgen sie von allein dafür, dass der Boden gestärkt wird. Außerdem ist der Komposttee nicht nur eine natürliche, sondern auch eine preiswerte Lösung im Vergleich zu teuren Pflanzenschutzmitteln und Kunstdüngern.

    • Flaggenschwenker reihen sich auf einer langen Straße auf. Ein Signal ertönt. Jeder hebt seine Flagge genau dann, wenn er dieses Signal hört. Ob sich der Weg des Schalls so verfolgen und die Schallgeschwindigkeit messen lässt?

    • Katzen sehen im Dunkeln sehr viel besser als Menschen. Das liegt an einer reflektierenden Schicht im Katzenauge, dem sogenannten „Tapetum Lucidum“. Diese Schicht wirkt wie ein Lichtverstärker und ist der Grund, warum dafür, dass Katzenaugen im Dunkeln aufleuchten.

      In der Dämmerung sehen Katzen mehr als Menschen

      Menschen sehen in der Nacht viel weniger als Katzen. Sie sind auf elektrisches Licht oder Reflektoren an Leitpfosten entlang der Straßen angewiesen. Diese „Katzenaugen“ tragen ihren Namen nicht umsonst: Denn die Augen der Katzen können – im Gegensatz zu den menschlichen Augen – Licht reflektieren und deshalb in der Dunkelheit viel besser sehen. Hinzu kommt, dass Katzen ein größeres Gesichtsfeld als Menschen haben. Die nachtaktiven Tiere nehmen an der Peripherie ihres Gesichtsfeldes mehr wahr, als Menschen dies tun.

      Die Rezeptoren: Zapfen und Stäbchen

      Was passiert, wenn Licht ins Auge fällt? Sowohl bei der Katze als auch beim Menschen trifft das Licht auf die Netzhaut. Diese besteht wiederum aus Millionen winziger Rezeptoren. Es gibt zwei Arten von Rezeptoren: Die Zapfen sind für die Farben zuständig, die lichtempfindli-cheren Stäbchen für die Hell-Dunkel-Wahrnehmung. Wichtige Unterschiede zwischen Katze und Mensch dabei sind: Katzen haben eine deutlich höhere Anzahl von lichtempfindlichen Stäbchen und eine andere Farbwahrnehmung als wir. Bisher gehen Wissenschaftler davon aus, dass Katzen die Welt eher blau-violett und grün-gelb sehen.

      Das „Tapetum Lucidum“

      Der entscheidende Unterschied aber, warum Katzen in der Dämmerung besser sehen als Menschen, ist eine reflektierende Schicht hinter der Netzhaut. Diese Schicht, Fachleute nen-nen sie „Tapetum Lucidum“, wirkt wie ein Lichtverstärker. Fällt das Licht ins Katzenauge, so wird es wie von einem Spiegel noch einmal auf die Rezeptoren zurückgeworfen. Das hilft den Vierbeinern aus wenig Licht sehr viel mehr zu machen. Leuchten Katzenaugen im Dunk-len auf, ist der Grund das „Tapetum Lucidum“. Die schlitzförmig, senkrecht stehenden Pupil-len der Katze ermöglichen darüber hinaus, dass der Vierbeiner einfallendes Licht, auch bei schlechter Beleuchtung, maximal nutzen kann.

    • Eine Stubenfliege zu fangen ist beinahe ein Ding der Unmöglichkeit. Das liegt an ihren Facettenaugen und ihrem flinken Gehirn. Im Gegensatz zum Menschen sieht sie um ein Vielfaches schneller und kann deshalb Gefahren rechtzeitig erkennen.

      Die Facettenaugen der Stubenfliege bewahren sie vor Gefahren

      Jeder kennt die Situation: Eine Stubenfliege schwirrt hartnäckig umher, es ist aber beinahe unmöglich sie mit der Hand zu fangen. Die Fliege ist einfach schneller – und das, obwohl sie im Durchschnitt nur sieben Millimeter groß ist und 20 Tage lang lebt. Von weitem betrachtet, scheint die Stubenfliege, genau wie der Mensch, nur zwei Augen zu haben. Tatsächlich hat sie zwei Facettenaugen, die aber jeweils aus tausenden sechseckigen Einzelaugen bestehen. Jedes Einzelauge hat Sinneszellen, die das Licht aus unterschiedlichen Blickwinkeln verarbeiten. Die Stubenfliege hat sozusagen einen eingebauten Rundumblick, während der Mensch ein begrenztes Gesichtsfeld hat.

      Das Gehirn der Stubenfliege sorgt für eine schnelle Wahrnehmung

      Doch das ist nicht der einzige Grund, warum die Stubenfliege reaktionsschneller ist als der Mensch. Aus Sicht der Fliege bewegen sich die Menschen vier Mal so langsam wie sie selbst und das liegt am flinken Gehirn der Stubenfliege. Die Wege im Fliegengehirn sind kurz, weshalb die kleinen Brummer Gefahren sehr viel schneller wahrnehmen als andere Lebewesen. Wie genau die Stubenfliege sieht, ist allerdings unklar. Sieht sie die Welt als zusammenhängendes Mosaik oder in tausend Einzelbildern? Das ist für die Wissenschaft noch zu erforschen.

      Fernsehen ist für Stubenfliegen wie Zeitlupe

      Bekannt ist jedoch, dass die Stubenfliege ein Vielfaches mehr an Bildern pro Sekunde sieht als der Mensch. Die Fliege kann etwa 200 einzelne Bilder pro Sekunde erkennen; der Mensch dagegen nur rund 18 Bilder. Das macht sich vor allem das Fernsehen zunutze: Ein Film besteht in der Regel aus 25 einzelnen Bildern pro Sekunde, die der Mensch als fließende Bewegungen wahrnimmt. Das Gehirn baut einzelne Bilder, die vom Auge an das Gehirn gesendet werden, zu einer fließenden Abfolge zusammen. Bei der Fliege geht das sehr viel schneller als beim Menschen. Deshalb sieht die Stubenfliege Fernsehen wie in Zeitlupe oder wie ein viel zu langsam ablaufendes Daumenkino.

    • 600 Kugeln, dicht an dicht aufgereiht. Einmal darf der Billardspieler stoßen. Wird es ihm gelingen, seine Stoßenergie bis zur letzten Kugel weiter zu geben?

    • Manche Objekte oder Lebewesen sind so klein, dass selbst eine Lupe nicht mehr ausreicht, um winzigste Details zu erkennen. Da hilft nur ein Mikroskop! Kriminalbiologe Mark Benecke nutzt es zum Beispiel für die Bestimmung von Fliegenlarven. Aber wie genau funktioniert ein Mikroskop?

    • Eine Lupe ist eine geniale Erfindung. Im Alltag ist sie hilfreich, um Kleingedrucktes zu entziffern. Für Kriminalbiologen wie Mark Benecke ist sie außerdem ein wichtiges Werkzeug am Tatort. Aber wie funktioniert eine Lupe?

    • Ist etwas schmutzig geworden, bekommt man es mit Seife oder Waschpulver schnell wieder sauber. Aber mit welchem Trick schaffen es die waschaktiven Substanzen, ein eben noch verschwitztes und verschmutztes T-Shirt im Handumdrehen in ein blitzsauberes und wohlriechendes Kleidungsstück zu verwandeln?

    • Wir wollen einen Elefanten wiegen, indem wir ihn auf ein Floß bugsieren: Mit dem Dickhäuter verändert sich der Tiefgang des Floßes. Ob sich so sein Gewicht feststellen lässt?

      Schlagworte: Waage, Wasserstand, Wiegen
    • Wie wird Allgäuer Käse gemacht?

      Wer Käse liebt, weiß den Allgäuer Käse besonders zu schätzen. Aber wie wird eigentlich aus der Milch der Kühe, die auf den Bergwiesen saftige Gräser und Kräuter weiden, ein Käselaib mit dem ganz besonderen, würzigen Aroma?

    • Ein Hochzeitskleid wird gemacht. Das Material des Kleides: Salz. Damit das kristalline Kleid entstehen kann, müssen Salzgehalt, Temperatur und Experimentdauer exakt aufeinander abgestimmt werden.

    • Ein Wassertropfen fällt zu Boden. Ein alltäglicher Vorgang. Aber betrachtet man den Tropfen dabei durch die Linse einer Zeitlupenkamera, bietet er ein Schauspiel von majestätischer Schönheit. Beim Aufprall bildet sich eine Krone aus Wasser. Wie muss sie beschaffen sein, damit sie einem König passt?

      Schlagworte: Milch
    • Laser sind inzwischen alltägliche Geräte geworden. Aber wie genau entsteht in diesen Geräten eigentlich der Laserstrahl? Wir zeigen das physikalische Prinzip und die technische Umsetzung.

      Schlagworte: Elektronen, Laser, Licht
    • Um herauszufinden, wieso Windeln große Mengen Flüssigkeit aufnehmen können und trotzdem trocken bleiben, basteln wir eine Riesenwindel. Wir lassen vier Probanden an den Start gehen. Sie sollen pinkeln, was die Windel hält…

    • In der Antike galt die Erde als Mittelpunkt des Universums. Dieses Weltbild hielt sich über hunderte von Jahren, bis es im Zeitalter der Renaissance durch die Berechnungen genialer Mathematiker ins Wanken kam. Einer von ihnen war Johannes Kepler. Was genau hat er herausgefunden?

  • Naturwissenschaft

    • Nein! Salamander und Eidechsen sind nicht verwandt. Sie ähneln sich zwar in Körperform und Körperbau, aber Salamander sind Amphibien, Eidechsen Reptilien. Sie unterscheiden sich in Vielem, von der Beschaffenheit ihrer Haut über die Fortpflanzung bis hin zum bevorzugten Lebensraum.

      Nicht verwandt und nicht verschwägert: Salamander und Eidechsen

      Sowohl Salamander als auch Eidechsen sind vierbeinige Bodenbewohner. Die Ähnlichkeit ihres Körperbaus und ihrer Körperform könnte eine Verwandtschaft vermuten lassen. Aber der Augenschein trügt. Bei genauerem Hinsehen offenbaren sich wichtige Unterschiede:

      Eidechsen sind Reptilien

      Die Echten Eidechsen (Lacertidae) sind eine Reptilienfamilie innerhalb der Schuppenkriechtiere (Squamata). Im Deutschen werden sie zumeist einfach als „Eidechsen“ bezeichnet. Aktuell unterscheidet man rund 350 Arten in mehr als 40 Gattungen. Ihre bevorzugten warmen und trockenen Lebensräume finden sie in Europa, Afrika und Asien. In Australien sowie in Nord- und Südamerika kommen sie dagegen nicht vor. In Deutschland und der Schweiz werden fünf Arten gezählt: Die Zauneidechse, die Mauereidechse, die Waldeidechse sowie die Westliche und die Östliche Smaragdeidechse; im Süden Österreichs ist die Kroatische Gebirgs-eidechse heimisch. Andere einheimische Reptilien oder Kriechtiere (von lateinisch reptilis „kriechend“) - in Deutschland leben 15 Reptilienarten - sind z. B. Schlangen und Schildkröten. Eidechsen sind schlanke, flinke und bodenbewohnende Tiere. Ist ihr Körper aufgewärmt, können sie sich sehr schnell bewegen. Ihre Größe variiert von 12 bis 90 cm, wobei kleinere Formen überwiegen. Sie haben eine trockene Schuppenhaut, vier Beine mit jeweils fünf Zehen mit Krallen und einen langen Schwanz. Sie atmen nur über die Lunge. In der Regel ernähren sie sich von wirbellosem Getier, gelegentlich auch von Samen und Früchten; ihre Eier legen sie an einem warmen und trockenen Ort. Wasser spielt in ihrem Leben eine untergeordnete Rolle; ganz anders als bei den Salamandern.

      Salamander sind Amphibien

      Salamander sind Amphibien aus der Ordnung der Schwanzlurche. Dazu gehören ständig im Wasser lebende Arten wie der Japanische Riesensalamander, aber auch permanent an Land lebende Arten wie der Alpensalamander. Als typische Amphibien sind Salamander in beiden Elementen zuhause. Das signalisiert schon das Wort Amphibien, das eine Substantivierung des altgriechischen Adjektivs amphibios ist, was auf Deutsch doppellebig heißt. Salamander sind mit Molchen und Fröschen verwandt. Die meisten Salamander bevorzugen eine humide und schattige Umgebung, wie sie Laub- und Mischwälder mit Gewässern bieten. Letztere brauchen sie für ihren Nachwuchs. Nach der Paarung an Land bleiben die befruchteten Eier bis zu zehn Monate lang im Mutterleib, ehe sich die Salamander-Weibchen im Frühjahr aufmachen, um die schon weit entwickelten Larven in einem langsam fließenden Bach oder einem Weiher mit kühlem und sauberem Wasser abzusetzen. Die Larven erinnern an Kaulquappen, haben aber vier Beine und außenliegende Kiemen. Nach etwa drei Monaten vollzieht sich die Metamorphose: Dabei werden die Kiemen durch Lungen ersetzt; aus der Larve wird ein Salamander, der fortan an Land lebt. Ihre glatte Haut müssen Salamander stets feucht halten. Über Hautdrüsen am Rücken und hinter den Ohren können sie ein giftiges Sekret absondern, das natürliche Feinde wie Greifvögel, Füchse und Hunde abschreckt. An ihren beiden hinteren Extremitäten haben Salamander jeweils fünf, an den beiden vorderen aber nur vier Zehen ohne Krallen. Am Tag verkriechen sie sich unter Baumstämmen, im Laub auf dem Boden, in Erdhöhlen oder Felsspalten. In der Nacht gehen sie auf Nahrungssuche, wobei die eher behäbigen Tiere Tausendfüßler, Asseln, Regenwürmer und Schnecken „jagen“. Trockene Hitze mögen sie nicht. Im Winter suchen sich die wechselwarmen Kaltblüter ein lauschiges Plätzchen unter der Erde oder in einem Komposthaufen, wo sie in Winterstarre verfallen.

    • Der Regenwurm führt ein Leben im Verborgenen. Man bekommt ihn nur selten zu Gesicht. Und wenn, dann meistens – wie der Name schon sagt – bei Regen. Aber eigentlich fühlt er sich nur unterirdisch so richtig wohl. Denn dort – im Boden - ist sein Zuhause. Aber was macht so ein Regenwurm eigentlich den lieben langen Tag und warum ist er so wichtig für fruchtbaren Boden?

    • Rosa Gefieder, lange dünne Beine und ein einzigartiger Schnabel. Flamingos sind außergewöhnliche und elegante Vögel. Bekannt sind vor allem die großen Flamingokolonien in salzigen Flachwasserzonen, wo sich die Tiere von Salinenkrebschen ernähren. Aber Flamingos kommen auch mit Süßwasser gut zurecht. Sie wurden sogar schon am Chiemsee und am Bodensee gesichtet. 

      Uralte Verwandtschaft  

      Innerhalb der Klasse der Vögel gehören Flamingos zur Ordnung der Phoenicopteriformes und der Familie der Phoenicopteridae. Sechs verschiedene Arten sind bekannt: Rosaflamingo (Phoenicopterus roseus), Kubaflamingo (Phoenicopterus ruber), Chileflamingo (Phoenicopterus chilensis), Zwergflamingo (Phoeniconaias minor), Andenflamingo (Phoenicoparrus andinus) und James-Flamingo (Phoenicoparrus jamesi). Evolutionär betrachtet stammen Flamingos von einer sehr alten Vogelgruppe ab. Fossilfunde belegen, dass diese bereits vor 30 Millionen Jahren im erdgeschichtlichen Zeitintervall Oligozän lebten.

      Majestätisch und gesellig 

      Flamingos sind große, majestätische Vögel. Bei einem Gewicht von zwei bis vier Kilogramm werden sie bis zu 160 cm groß. Sie fallen vor allem durch ihr ganz in Rosa gefärbtes Federkleid, den langen Hals, den nach unten abgeknickten Schnabel und die langen Beine auf, mit denen sie sowohl durch seichtes als auch durch tieferes Gewässer waten können. Flamingos sind sehr gesellige Tiere und leben oft in großen Kolonien. Besonders faszinierend ist der Balztanz. Dabei präsentieren sich die Männchen - dicht an dicht – mit synchron ausgeführten und komplex kombinierten Tanzfiguren, wie zum Beispiel dem "Head Flagging” (Hin- und Herbewegen des Kopfes bei gestrecktem Hals), “Marching” (geschlossenes Marschieren der Gruppe mit abruptem Richtungswechsel) oder dem “Wing salute” (Stillstehen und Ausbreiten der Flügel). 

      Der Schnabel – ein hochspezialisierter Filterapparat 

      Zum Fressen tauchen Flamingos den Schnabel mit der Oberseite nach unten ins Wasser und schwenken dabei den Kopf hin und her. Manchmal trippeln sie dabei auch im Schlamm, um ihn mit allem, was sich an Kleinstlebewesen so darin tummelt, aufzuwühlen. Das schlammige Gemisch wird in den Schnabel durch Bewegungen der Zunge eingesaugt und dann gleich wieder herausgepresst. An den Seiten besitzt der Schnabel kurze Zähnchen, Lamellen genannt. Kleine Krebse und Muscheln, Insekten, Weichtiere, Wasserpflanzen, Pflanzensamen, Algen und andere Kleinstlebewesen (Größe zwischen 0,6 und 6 Millimeter) bleiben darin hängen und werden dann heruntergeschluckt. Diese Art Schnabel wird wegen seiner Filterfunktion auch “Seihschnabel” genannt (seihen = sieben, aussieben). Manchmal nutzen Flamingos ihren Schnabel aber auch wie eine Zange, um etwas größere Beutetiere wie Fische oder Krebse zu ergreifen. 

      Farbgebendes Futter – gut gesalzen 

      nsgesamt haben Flamingos ein breites Nahrungsspektrum. Eine Besonderheit ist ihre Spezialisierung auf extrem salzhaltige Gewässer. Dort haben sie wenig Nahrungskonkurrenten und ernähren sich von Salinenkrebsen (Artemia salina) und Algen. Über Salzdrüsen im Schnabel können sie zu viel aufgenommenes Salz wieder ausscheiden. Die Krebse und manche Algen enthalten Carotinoide, natürliche Farbstoffe, die rötlich färben. Diese werden in der Leber des Flamingos mithilfe von Enzymen in Farbpigmente umgewandelt, die in die Federn eingelagert werden. Dadurch wird das Gefieder rosa. Ohne diese Pigmente entfärbt es sich nach einiger Zeit wieder. Die Pigmente färben auch die nahrhafte Kropfmilch rot, mit der die Eltern ihren Nachwuchs in den ersten Lebenswochen füttern. Auch wenn Flamingos sehr gut an das Leben in salziger Umgebung angepasst sind – sie finden auch in Süßgewässern Nahrung und können dort brüten.   

      Lebensräume 

      Flamingos haben ihren Lebensraum je nach Art in Südamerika, Mittelamerika, Nordamerika, Afrika und Asien. Der Rosaflamingo kommt auch in Europa vor. In Südeuropa gibt es Flamingokolonien in Spanien, Portugal, Italien und Südfrankreich. In der Camargue an der französischen Mittelmeerküste befindet sich eines der wichtigsten europäischen Brutgebiete. In manchen Jahren brüten dort über zwanzigtausend Flamingo-Paare. Die nördlichste europäische Brutkolonie befindet sich in Nordrhein-Westfalen an der Deutsch-Niederländischen Grenze im Naturschutzgebiet “Zwilbrocker Venn”.  

      Flamingos am Bodensee 

      Von Ende Dezember 2014 bis Mitte Januar 2015 wurden fünf Rosaflamingos am Untersee zwischen Hegne und Konstanz gesichtet. Ornithologen konnten mit dem Fernglas die Ringnummer erkennen und die Herkunft der Tiere feststellen. Die Flamingos am Bodensee waren keine Zooflüchtlinge, sondern Wildvögel, die aus Italien kamen. Die Tour von Italien an den Bodensee war aber auch keine Zugroute; vielmehr vermuten Ornithologen in der ungewöhnlichen Reise einen Erkundungsflug, bei dem die Vögel nach neuen Nahrungsangeboten oder gar Brutgebieten suchten. Das Klima am Bodensee ist eigentlich zu kalt für Flamingos. Mit den wärmeren Temperaturen, die durch den Klimawandel in Zukunft zu erwarten sind, könnte die Bodenseeregion für sie aber interessant werden. Die Frage, ob Flamingos am Bodensee tatsächlich erfolgreich brüten können, ist schwer zu beantworten. Nahrung gäbe es genug, aber da Starkregenereignisse und Schneeschmelze einen starken Anstieg des Wasserpegels mit sich bringen können, wäre die Gefahr groß, dass die Schlammhügel, die die Flamingos als Nest anlegen, vollständig überschwemmt würden. 

      Schlagworte: Bodensee, Flamingos, Vögel
    • Seit 2014 wird der ursprünglich im Mittelmeerraum beheimatete Lavendel in brachliegenden Weinbergen an der Mosel angebaut. Dort findet er infolge des Klimawandels günstige Standortbedingungen. Der Lavendel wertet die Landschaft auf, bietet aber auch eine alternative Einkommensquelle.

      Lavendel - Herkunft und Eigenschaften

      Der Lavendel – seine korrekte Bezeichnung lautet Echter oder Schmalblättriger Lavendel der Gattung Lavandula aus der Familie der Lippenblütler - ist eine beliebte Zierpflanze, wird aber auch zur Gewinnung von Duftstoffen und als Heilpflanze genutzt. Seine ursprüngliche Heimat sind die Küstenregionen des Mittelmeerraums. Lavendel wächst an trockenen, felsigen und warmen Hängen. In der Provence, deren Lavendelfelder ein beliebtes Reiseziel sind, hat sich die Lavendel-Anbaufläche zwischen 2002 und 2012 etwa halbiert. Als Ursachen gelten Schädlinge und einige Kälteperioden mit wenig Schnee. Schnee schützt den Lavendel vor strengem Frost. Der Echte Lavendel gilt als winterhart und kann den in Mitteleuropa üblichen Winter im Freien gut überstehen. In Deutschland findet man den Echten Lavendel zumeist nur angepflanzt in Gärten vor. Kommerzieller Lavendelanbau ist hierzulande - noch - wenig verbreitet. Aber das könnte sich ändern.

      Das Weinbaugebiet Mosel

      Die Region um die Mosel in Rheinland-Pfalz ist seit Jahrhunderten ein renommiertes Weinbaugebiet für Qualitätsweine aus besten Lagen. Es umfasst das Tal der Mosel, die Täler von Saar und Ruwer und Städte wie Trier, Traben-Trarbach, Cochem und Koblenz. 2017 produzierten mehr als 5.000 Winzer auf ca. 8.770 Hektar Rebfläche 668.000 Hektoliter Wein. In 91 Prozent der Weinberge wird Weißwein angebaut; mit über 5.393 Hektar ist die Region die größte Riesling-Anbaufläche der Welt. Etwa 40 Prozent der Weinberge befinden sich an Uferlagen mit Steigungen von 30 bis über 60 Prozent. Damit ist die Mosel weltweit das größte Steillagen-Weinbaugebiet.

      Klimawandel und Weinbau

      Die Prognosen klingen alarmierend: Stiege die Durchschnittstemperatur infolge des Klimawandels um zwei Grad an, könnten weltweit 56 Prozent der Weinbauflächen verloren gehen. Ein Wechsel auf andere Rebsorten könnte den Verlust auf 24 Prozent reduzieren. Allerdings fallen die Vorhersagen regional sehr unterschiedlich aus; die Folgen der globalen Erwärmung müssen für den Weinanbau nicht überall zwangsläufig negativ sein. Klar ist, dass sie Auswirkungen auf die Vegetationsdauer, das Rebsorten-Spektrum, die Ertragsmenge, die Traubenqualität und die Arbeit der Winzer haben wird. In Deutschland könnten steigende Temperaturen zu einem höheren Reifegrad der Trauben führen, was letztlich die Weinqualität verbessert. Denkbar ist, dass neue Weinanbaugebiete in nördlicheren Regionen erschlossen werden und wärmeliebende Trauben (z. B. Merlot), die aktuell kaum angebaut werden, bald eine größere Rolle spielen. Weintrauben reagieren sehr empfindlich auf klimatische Veränderungen, wobei manche Traubensorten widerstandsfähiger sind als andere. Witterungsschwankungen haben sich schon immer auf Menge und Qualität des Weines ausgewirkt, die je nach Jahrgang variieren können. Aber Wetterextreme, Trockenheit, die Gefahr von Spätfrost und neue Schädlinge erschweren den Winzern die Arbeit. Nehmen die Niederschläge zu, steigt die Gefahr von Pflanzenkrankheiten wie dem Falschen Mehltau. Als die Temperaturen im Sommer 2019 teilweise über 40 Grad Celsius kletterten, litten einige Sorten in einem bisher unbekannten Ausmaß unter Sonnenbrand: Die bräunlichen Stellen in der Schale der Trauben führen zur verstärkten Bildung bitterer Gerbstoffe, die den Geschmack des Weins beeinträchtigen. Manche Winzer belassen deshalb weniger Blätter an den Reben, um die Reife der Trauben zu verzögern. Andere verlegen den Weinanbau in höhere oder weniger sonnenreiche Lagen. Milde Winter schaden besonders dem Eiswein, denn die Trauben, aus denen er gekeltert wird, müssen vor der Ernte am Rebstock gefrieren.

      Lavendelanbau an der Mosel

      Der Klimawandel sorgt an der Mosel für zunehmend heiße Sommer. Manche Rebsorten wie der in der Region dominierende Riesling vertragen den Temperatur-anstieg nur schlecht. Zudem zieht die Hitze bis dato unbekannte Schädlinge an. Das stellt die einheimischen Winzer vor neue Herausforderungen. Während manche auf resistentere Rebsorten setzen, geben andere ihre Weinberge aus wirtschaftlichen Gründen auf. Zurück bleiben unansehnliche Brachen inmitten der imposanten Terrassen-Weinberge, dem Aushängeschild der Region.  Das rief die Mitglieder des gemeinnützigen Vereins Lehmer Razejunge auf den Plan. Der Name leitet sich von der „Raz“ ab, einer geflochtenen Kiepe, mit der die jungen Männer aus Lehmen einst im Winter den Stallmist zur Düngung der Reben in die Steillagen trugen. Der Verein, der sich der Heimatpflege und dem Umwelt- und Naturschutz verschrieben hat, setzte 2014 in nicht mehr genutzten Rebflächen über 3.000 Lavendelpflanzen aus, um die Verbuschung der Weinberge zu verhindern und die Landschaft optisch aufzuwerten. Inzwischen ist klar: Der Lavendel, der mit wenig Wasser auskommt, fühlt sich an der Mosel sehr wohl und gedeiht prächtig.

      Neue Chancen für alte Weinberge

      Heute wachsen auf 14 Felsterrassen in der Lehmener Würzlay, einer Steillage mit 70 Prozent Steigung, neben drei Arten Lavendel, 160 verschiedene Pflanzen, 60 Sorten Kräuter sowie Weinbergpfirsich- und Feigenbäume. Das lockt nicht nur mehr Bienen, Hummeln, Eidechsen und Nattern an denn je, sondern auch 27 Schmetterlingsarten, darunter den sehr seltenen Apollofalter. Umweltschutz- und Naturerfahrungsprojekte für Kinder – darunter ein Weinberg-Lehrpfad – ergänzen das Konzept. Nicht zuletzt haben die Lavendel-Bauern mit der Herstellung von Lavendelöl, Lavendelhonig und anderen Produkten neue Einkommensquellen erschlossen. Ihre von Geldern der EU und des Landes Rheinland-Pfalz unterstützte Initiative zeigt, dass der Klimawandel auch Chancen bietet, wenn man sie denn ergreift.

    • Was hat das Nördlinger Ries mit der Mondmission zu tun?

      An der Grenze zwischen Baden-Württemberg und Bayern liegt das Nördlinger Ries. Die kreisrunde Region mit einem Durchmesser von etwa 25 Kilometern entstand vor 15 Millionen Jahren. War es ein Vulkanausbruch? Über lange Zeit rätselten Wissenschaftler über die Entstehung dieses imposanten Kraters. 1970 bekam das Ries hohen Besuch aus Amerika: Astronauten der Mondmission „Apollo 14“ nahmen die Region genauer unter die Lupe. Aber warum?

    • Was ist der genetische Code?

      Über sieben Milliarden Menschen leben heute auf der Erde und jeder einzelne von Ihnen ist ein Unikat. Wie kann das sein? Der „genetische Code“ macht es möglich! In diesem Code sind die Informationen gespeichert, die der Körper braucht, um Proteine - die Grundbausteine des Lebens - zu bilden. Eine virtuelle Reise ins Innere einer Zelle zeigt die wichtigsten Schritte vom genetischen Code zum Protein und verdeutlicht das faszinierende Zusammenspiel von DNA, RNA und Enzymen.

    • Der Hirntod ist die juristische Voraussetzung für eine Organspende. Unter Hirntod versteht man den irreversiblen Ausfall aller Hirnfunktionen: Die Nervenzellen in Großhirn, Kleinhirn und Hirnstamm sind durch den Sauerstoffmangel abgestorben. Heute kann fast jede Körperfunktion ersetzt werden. Nur das Gehirn nicht: Wenn es stirbt, ist eine Erholung nicht mehr möglich.

      Wann ist ein Mensch tot?

      Für den „gesunden Menschenverstand“ scheint die Sache klar: Tot ist man, wenn man nicht mehr lebt. Wenn das Herz nicht mehr schlägt, stirbt der ganze Organismus. So einfach ist die Sache aber nicht, denn die moderne Intensivmedizin hat den Prozess des Sterbens grundlegend verändert: Bleibt das Herz stehen, kann es künstlich wiederbelebt werden. Versagt die Lunge, kann eine Maschine einspringen. Erst mit dem unumkehrbaren Ausfall aller Hirnfunktionen, dem so genannten Hirntod, ist der Tod eines Menschen zweifelsfrei eingetreten. Denn ein Hirntoter kann nicht mehr aufwachen. In seinem Gehirn zirkuliert kein Blut mehr. Bisher ist kein einziger Fall bekannt, in dem ein nach den vorgeschriebenen Richtlinien als hirntot diagnostizierter Patient sich auch nur teilweise wieder erholt hätte. Auf den Hirntod folgen zwingend der Herzstillstand und der Ausfall aller übrigen Organe, sofern diese - und das ist ein folgenschwerer Eingriff - nicht künstlich am Leben erhalten werden. Der Deutsche Ethikrat, der die Bundesregierung in moralisch-ethischen Fragen berät, veröffentlichte im Januar 2015 eine ausführliche Stellungnahme zum Thema Hirntod. Darin vertritt das Gremium die These, dass nicht der Verlust von Denken, Fühlen und der eigenen Persönlichkeit den Hirntod begründet. Tot sind diese Patienten, weil sie ohne Gehirn nicht überlebensfähig sind.

      Die Diagnose Hirntod

      Ein Jahr nachdem der Chirurg Christian Barnard 1967 das Herz einer hirntoten Frau verpflanzt hatte, definierte eine Kommission der Harvard Medical School den Hirntod erstmals als den Tod des Menschen. Die Diagnose Hirntod ist also eine Folge und ein Ergebnis der Transplantationsmedizin; gestellt wird sie nur im Zusammenhang mit einer Organspende. In Deutschland wurde der Ausfall aller Hirnfunktionen 1997 im Rahmen des Transplantationsgesetzes zu einem legalen Todeszeitpunkt erklärt. Nach dem ärztlichen Ehrenkodex können Organe nur von Toten entnommen werden. Alles andere wäre aktive Sterbehilfe und gesetzlich verboten. Um den Hirntod zweifelsfrei feststellen zu können, wird eine Hirntoddiagnostik durch-geführt. Dabei muss ein sehr strenges, von der Bundesärztekammer vorgegebenes Protokoll mit verschiedenen diagnostischen Schritten eingehalten werden. Zur Sicherheit wird die Untersuchung zweimal im Abstand von mindestens zwölf Stunden durch zwei Neurologen durchgeführt. Wenn sicher ist, dass alle Hirnfunktionen unwiderruflich ausgefallen sind, bestätigen die Fachärzte den Hirntod des Patienten mit ihrer Unterschrift. Vorausgesetzt dass keine Organspende geplant ist, werden lebenserhaltende Maßnahmen danach sofort ausgesetzt. Hat der Patient dagegen zu Lebzeiten einer Organspende zugestimmt, wird die Intensivtherapie, vor allem die künstliche Beatmung, aufrechterhalten. Die Körperfunktionen hirntoter Organspender können lebendig gehalten werden, um lebensbedrohlich erkrankten Menschen effektiv mit Spenderorganen zu helfen.

      Zweifel am Hirntod-Kriterium

      Der Hirntod ist ein Fall für Experten. In der internationalen Fachwelt gibt es auch Zweifel, ob das Hirntodkriterium wissenschaftlich haltbar ist und als Tod des ganzen Menschen gelten kann. Lange ging man davon aus, dass es das Gehirn ist, das den gesamten Organismus steuert und integriert. Die neuere wissenschaftliche Forschung zeigt jedoch, dass die Integration eine Leistung des ganzen Organismus ist. Für manche Mediziner ist deshalb klar, dass der Tod keinen genauen Zeitpunkt kennt, sondern ein Prozess ist. Andere halten daran fest, dass ein Mensch nach der Hirntod-Diagnose verstorben ist. Für sie ist ein funktionierendes Gehirn Grundvoraussetzung für ein Leben. So hält der amerikanische Bioethikrat zwar am Hirntodkriterium fest, hat seine Begründung aber geändert. Er fragt nicht mehr, wann ein Mensch tot ist, sondern was Leben ausmacht. Als Kriterien nennt der Rat die Fähigkeit zu aktivem Austausch mit der Umwelt und die selbstständige Atmung. Unstrittig ist, dass die Transplantationsmedizin auf die Diagnose „Hirntod“ angewiesen ist. Will man Organe entnehmen, ist die präzise Festsetzung eines Todeszeitpunkts beim Spender unumgänglich. Und eine Organspende rettet Leben...

      Schlagworte: Gehirn, Organspende, Tod
    • Der Alpenbock ist ein auffällig hellblau-schwarz gezeichneter Käfer aus der Familie der Bockkäfer. Er nistet bevorzugt in abgestorbenen Buchen. Er ist in Südeuropa, den Alpenländern und einigen anderen Regionen heimisch. In Deutschland steht er unter Naturschutz.

      Aussehen und Erscheinungsbild

      Mit einer Körperlänge von etwa drei Zentimetern gehört der Alpenbock zu den größeren Mitgliedern der Familie der Bockkäfer. Dank seiner großen und kräftigen Beine ist der längliche Käfer ein gewandter Kletterer. Die Männchen sind im Durchschnitt etwas kleiner als die Weibchen. Im Aussehen unterscheiden sich die Geschlechter aber nur in Nuancen. Der größte Teil des Körpers ist blau, wobei die Farbe zwischen Himmelblau, Hellgrau und einem hellen Blauviolett changiert. Unter dem Mikroskop lässt sich erkennen, dass die blau gefärbten Körperteile sehr fein und dicht behaart sind. Die Körperteile ohne Behaarung sind samtig Schwarz. Auch die langen Fühler sind blau und schwarz gestreift. Sein schmuckes Aussehen und seine markante Zeichnung haben dem Alpenbock eine Karriere als Model eingetragen; in verschiedenen Ländern ziert sein Bild Briefmarken oder die Logos von Zeitschriften und Naturparks.

      Name, Vorkommen und Verbreitung

      In seiner Systema naturae hat der Naturforscher Carl von Linné den Alpenbock (Rosalia alpina) 1758 zum ersten Mal wissenschaftlich beschrieben. Den Art-Namen „alpina" (lat. in den Alpen lebend) und den deutschen Namen Alpenbock erhielt der Käfer vermutlich, weil seine langen, gegliederten Fühler an die Hörner eines Ziegenbocks erinnern und Linné die Schweizer Alpen für seinen bevorzugten Lebensraum hielt. Tatsächlich kommt der Alpenbock sowohl im Flachland als auch in Höhen bis über 1600 Meter in vielen getrennten Populationen vor: Von Spanien, Frankreich (inklusive Korsika), Nord- und Süd-Italien über die Alpenländer bis nach Griechenland (einschließlich Peloponnes) und dem Schwarzen Meer. Weitere Bestände gibt es in Polen, Tschechien, in Bayern und Baden-Württemberg, z. B. auf der Schwäbischen Alb und im oberen Donautal. Sie gehen allerdings überall zurück. In Skandinavien, aber auch in einigen deutschen Bundesländern (Sachsen-Anhalt, Thüringen, Brandenburg) gilt der Alpenbock als ausgestorben. In Europa ist er durch die Berner Konvention des Europarats geschützt. In Deutschland steht er seit 1936 unter Naturschutz und wird heute auf der Roten Liste der gefährdeten Arten als stark gefährdet geführt. Im Gegensatz zu anderen gefährdeten Arten fehlt es dem Alpenbock in Mitteleuropa nicht an potentiellem Lebensraum. Vielmehr machen ihm die intensive Bewirtschaftung von Buchenwäldern und der Mangel an abgestorbenen Bäumen zu schaffen.

      Eiablage und Entwicklung

      Das Männchen folgt dem Weibchen, bis dieses in die Paarung einwilligt. Wird das Männchen abgewiesen, zieht es sich in der Regel zurück. Die Paarung dauert etwa eine Stunde. Mit Hilfe seines Legebohrers, der bis zu vier Zentimeter tief ins Holz eindringen kann, legt das Weibchen seine Eier einzeln in Ritzen und Spalten von toten oder absterbenden Buchenstämmen ab. Aus den Eiern entwickeln sich Larven, die sich vom Holz ernähren, wobei sie sich mit der Zeit immer tiefer in den Stamm hineinbohren. Im Frühsommer legen sie unter der Rinde eine Kammer an, die so genannte Puppenwiege. Bevor sie sich verpuppen, verschließen die Larven den Ausgang mit Holzspänen. Einmal gewählte Bruthölzer werden über Jahre immer wieder belegt, bis sie als Nahrungsressource aufgebraucht sind. Während die Larven je nach Nährstoffgehalt des Baumes zwei bis vier Jahre brauchen, um sich zu entwickeln, ist das erwachsene Leben eines Alpenbocks kurz. Ihm bleiben nur zehn Tage bis wenige Wochen, um einen Partner zur Fortpflanzung und einen Platz für die Ablage der Eier zu finden. Bei gutem Wetter legt er bei seinen Erkundungsflügen bis zu einem Kilometer zurück. Ab Mitte August trifft man keine Tiere mehr an.

      Gefährdung und Artenschutz

      Der Bestand an Alpenböcken geht überall stark zurück. Da sonnenbeschienenes Alt- oder Totholz in den intensiv bewirtschafteten Wäldern rar geworden ist, weichen die Käferweibchen häufig auf gelagertes Buchenholz aus. Eine fatale Entscheidung, wenn das Holz weiterverarbeitet oder verfeuert wird. Für den Schutz der Art wäre es hilfreich, alte, geschädigte oder abgestorbene Buchen an sonnigen Standorten stehen zu lassen oder in Regionen mit gesichertem oder vermutetem Alpenbock-Vorkommen etwa zwei Meter lange, mindestens 25 Zentimeter dicke Buchenstämme an gut besonnten Orten aufzustellen. Waldbesitzern wird empfohlen, für den Verkauf bestimmte Buchenstämme vor dem Sommer, der Flugzeit der Alpenböcke, wegzubringen oder im Schatten zu lagern. Naturschützer und Forstwirte ergreifen auch andere Maßnahmen: Sie „ringeln“ Buchen, d.h. sie kerben den Stamm rundum mit der Motorsäge ein, sodass er langsam abstirbt und zum idealen Habitat für Alpenböcke wird. So könnten sie Alpenböcke dem Ökosystem Wald länger erhalten bleiben.

      Schlagworte: Buche, Holz, Käfer, Larve
    • Ein Entomologe ist ein Insektenforscher. Sein Fachgebiet ist der Zweig der Zoologie, der sich mit den Insekten (griech. éntomon, das „Eingeschnittene“), der artenreichsten Gruppe von Lebewesen, befasst.

      Der Begriff Entomologie

      Der seit dem 18. Jahrhundert gebräuchliche Begriff Insekt ist die Eindeutschung des lateinischen Insectum, was so viel bedeutet wie „eingeschnitten“. Das Wort verweist auf die stark eingekerbten Körperteile der Insekten, die auch als Kerbtiere bezeichnet werden. Auch das griechische Wort “éntomon” (das Eingeschnittene) bezieht sich auf den Körperbau der Insekten. Wissenschaftler, die die Welt der Insekten erforschen, heißen deshalb Entomologen. 

      Geschichte der Entomologie

      Die Erfindung des Mikroskops gibt der Insektenforschung seit dem 17. Jahrhundert entscheidenden Auftrieb; sie ermöglicht ein genaueres Studium der Morphologie und eine immer bessere Unterscheidung der Arten. Im 18. Jahrhundert erleben die Naturwissenschaften einen erstaunlichen Popularitätsschub. Unter Adligen wird das Sammeln von Insekten, speziell Schmetterlingen, ein beliebter Zeitvertreib. Fürsten mehren ihr Prestige, indem sie Gelehrte fördern und Naturalienkabinette und Insektensammlungen anlegen. Exotische Exemplare aus aller Welt finden den Weg nach Europa. Mit seiner Systema entomologiae sistens insectorum classes (Leipzig 1775) gilt Johann Christian Fabricius als Begründer der Entomologie als eigenständiger Wissenschaft. Seine Systematik, die ein halbes Jahrhundert Bestand hat, schafft eine Ahnung von der Artenfülle der Insekten; und das, obwohl die tropische Insektenfauna damals praktisch noch unbekannt ist. Im 19. Jahrhundert setzt sich ein naturwissenschaftlicher Ansatz durch, der v. a. die evolutionäre Entwicklung und die Verwandtschaftsbeziehungen untersucht. Die Forschung spezialisiert sich immer mehr, Entomologen befassen sich meist nur noch mit einer einzigen Insektenordnung. Neue Maßstäbe setzt das Werk von Charles Darwin (1809 – 1882). Es stellt der Entomologie die Aufgabe, durch den Vergleich der anatomischen Merkmale die Verwandtschaften der Arten als Ergebnis der Evolution zu erklären. Im 20. Jahrhundert ersetzt der deutsche Entomologe Will Heinrich die Taxonomie, die Insekten v. a. aufgrund von Ähnlichkeiten und Form-verwandtschaften klassifiziert durch eine Systematik, die der genealogischen, also der evolutionären Verwandtschaft folgt. Die Genetik spielt nun eine größere Rolle.

      Insektenforschung – Arbeitsbereiche moderner Entomologen

      Entomologen bestimmen, präparieren und konservieren Insekten, ordnen sie in die biologische Systematik ein und beschreiben neu entdeckte Arten. Ein wichtiges Arbeitsmittel für Entomologen sind Insektensammlungen: Sie helfen beim Bestimmen der unterschiedlichen Arten, dienen als Speicher für Typen und als Datenbasis für wissenschaftliche Studien. Die Belegexemplare, die Entomologen sammeln, stellen für die Populationen keine Bedrohung dar. Die Ergebnisse ihrer Forschungen publizieren Entomologen in Fachzeitschriften, Büchern oder im Internet. Sie halten Vorträge, richten, wenn sie in einem Museum angestellt sind, Ausstellungen aus und erweitern die Bestände ihrer Häuser durch die Integration von Sammlungen aus Schenkungen, Nachlässen und Ankäufen. Sie beraten aber auch die Öffentlichkeit über in Haus und Garten gefundene Insekten und arbeiten Behörden und Institutionen zu. So kommt ihnen in den Bereichen Umwelt- und Naturschutz eine wichtige Rolle als Botschafter für den Artenschutz zu. Aber auch Zoll und Polizei profitieren von ihrer Expertise.

      Forensische Entomologie

      Ein besonderer Teilbereich der Insektenkunde ist die Forensische Entomologie. Durch die Untersuchung von Insekten können Wissenschaftler - in Deutschland gibt es aktuell nur vier dieser Spezialisten - wichtige Hinweise zur Aufklärung von Mordfällen liefern. Die Abfolge der Larvenstadien und die Besiedelung durch verschiedene Insektenarten geben Hinweise auf die Liegezeit einer Leiche, auf die Todesursache, die Todesumstände und den Todeszeitpunkt.

      Forschungsobjekt Insekten

      Insekten sind die artenreichste Klasse der Tiere überhaupt. Zu ihr zählen u. a. Käfer, Ameisen, Fliegen, Heuschrecken, Läuse, Bienen und Schmetterlinge. In Deutschland gibt es etwa 33 000 Arten; das sind ca. 70 Prozent aller Tierarten im Land. Weltweit sind etwa 1,5 Millionen Insektenarten wissenschaftlich erfasst; mehr als 70 Prozent aller beschriebenen Tierarten sind Insekten. Man geht aber davon aus, dass vor allem in den tropischen Regenwäldern noch Millionen unentdeckter Arten leben. Zugleich ist aufgrund der fortschreitenden Zerstörung natürlicher Lebensräume zu befürchten, dass viele Arten aussterben könnten, bevor sie wissenschaftlich erfasst worden sind. Auch deshalb sind die Ökologie und der Artenschutzgedanke für viele Entomologen heute von zentraler Bedeutung: Denn die Insektenfauna spielt eine Schlüsselrolle beim Erhalt der Artenvielfalt.

      Insektensterben

      In Deutschland ist die Zahl der Insekten in rund dreißig Jahren um 76 Prozent zurückgegangen. Weltweit verschwinden pro Jahr 0,92 Prozent von ihnen, also fast ein Hundertstel aller Insekten. Auch wenn die Gründe von Fall zu Fall variieren, ist klar, dass den Insekten zunehmend Lebensraum und Nahrung verloren gehen. Eine zentrale Rolle beim Rückgang der Artenvielfalt spielt die Landwirtschaft. Wo Mono-kulturen zunehmen, verschwinden Ackerrandstreifen, Blumenwiesen und Raine. Die Versiegelung der Böden und die Zerstückelung der Landschaft gefährden das Überleben von Insekten ebenso wie Pestizide, Insektizide und andere Giftstoffe. Wenn die Insekten sterben, leiden Vögel, Fledermäuse und Kleinsäugetiere, die ausgewachsene Insekten oder ihre Larven, Maden oder Raupen fressen. 90 Prozent aller Wildblumen und 75 Prozent der Nutzpflanzen werden von Insekten bestäubt. Ohne Insekten gäbe es kein Obst, keine Kartoffeln und keinen Käse. Darüber hinaus transportieren Insekten Samen durch Wald und Flur, lockern die Böden auf, vernichten Aas, entsorgen tierischen Kot, bauen organische Masse (Laub, Totholz etc.) ab und erhalten so die Fruchtbarkeit der Böden. Mit anderen Worten: Insekten sind von überlebenswichtiger Bedeutung für viele Ökosysteme.

    • Der schwarz-gelb gefleckte Feuersalamander – er war 2016 Lurch des Jahres in Deutschland - zählt zu den Amphibien; seine ersten Lebensmonate verbringt er im Wasser, ehe er nach einer Metamorphose an Land geht, wo er seinen idealen Lebensraum in feuchten Mischwäldern findet. Er ist in Europa weit verbreitet.

      Der Feuersalamander - Aussehen und Name

      Der Feuersalamander (Salamandra salamandra) gehört zur Familie der Echten Salamander. Er hat einen breiten Kopf, einen plumpen Körper und einen kurzen Schwanz. Er wird etwa 20 Zentimeter lang und 15 bis 25, in Einzelfällen auch 40 Jahre alt. Der schwedische Naturforscher Carl von Linné hat die Spezies 1758 in die moderne zoologische Nomenklatur eingeführt. Dabei übernahm er den aus der Antike und dem frühen Mittelalter überlieferten Namen, der auf einen Aberglauben zurückgeht. Dem Feuersalamander wurde die Fähigkeit zugeschrieben, durch sein Gift Feuer zum Erlöschen zu bringen oder – aufgrund seiner inneren Kälte - gar im brennenden Feuer leben zu können. Tatsächlich können Feuersalamander aus Hautdrüsen am Rücken und hinter den Ohren ein weißliches Sekret (Salamandrin) versprühen. Während es bei Menschen nur ein Brennen auf der Haut verursacht, schützt es Salamander vor natürlichen Feinden wie Hunden, Füchsen und Greifvögeln. Das Gift reizt die Mundscheinleim-häute der Fressfeinde, die den Salamander deshalb verschmähen. Seine auffällige schwarz-gelbe Zeichnung ist eine Warnfärbung, die signalisiert: Ich bin ungenießbar! Je nach regionaler Mundart wird der Feuersalamander – nicht immer in scharfer Abgrenzung zum Alpensalamander - auch als Feuermolch, Erdsalamander, Regenmolch, Regenmännchen, Gelber Schneider, Berg-Narr, Regenmolli oder Tattermandl (bayerisch) bezeichnet. Der – zumindest bei Kindern - bekannteste Vertreter der Spezies dürfte allerdings Lurchi sein, der es als Werbefigur einer Schuhfirma zeitweise zu großer Beliebtheit brachte.

      Fortpflanzung und Metamorphose

      Feuersalamander werden mit vier Jahren geschlechtsreif. Nach der Paarung an Land* bleiben die befruchteten Eier bis zu zehn Monate lang im Mutterleib. Im Gegensatz zu anderen Lurchen legen Feuersalamander keine Eier, sondern setzen bis zu 70 relativ weit entwickelte Larven in einem langsam fließenden Bach oder einem kleinen See mit kühlem, sauberem und Sauerstoffreichem Wasser ab. Die braun gefärbten Larven werden im März oder April geboren und sind von ihrer ersten Lebensminute an auf sich allein gestellt. Sie sehen wie Kaulquappen aus, haben aber vier Beine, mit denen sie durchs Wasser paddeln. Sie fressen herumschwimmende Insektenlarven und atmen mit Kiemen, die außen am Kopf deutlich zu sehen sind. Nach zwei bis sechs Monaten vollzieht sich die so genannte Metamorphose: Die Haut nimmt die typische schwarz-gelbe Musterung an, die Kiemen werden nach und nach durch Lungen ersetzt. Nach Abschluss der Metamorphose ist der Feuersalamander bereit für ein Leben an Land.

      Verbreitung

      Feuersalamander sind in Mittel- und Südeuropa weit verbreitet, leben aber auch in Nordafrika, in Israel, in Kleinasien und im Iran. Insgesamt sind mehr als zehn Unterarten bekannt. In Deutschland gibt es deren zwei: Der "Salamandra salamandra salamandra" hat Flecken auf dem Rücken und wird deshalb auch "gefleckter Feuersalamander" genannt. Im Gegensatz dazu ist der "Salamandra salamandra terrestris" auf dem Rücken gestreift, weshalb er als "gebänderter Feuersalamander" bezeichnet wird. Feuersalamander bevorzugen feuchte, kühle Plätze in Laub- und Mischwäldern mit Bachläufen. Am Tag verkriechen sie sich unter Baumstämmen, im Laub auf dem Boden, in Erdhöhlen oder Felsspalten. Aktiv werden sie vor allem nachts und bei Regenwetter. Sie jagen hauptsächlich Insekten wie Tausendfüßler, Spinnen oder Asseln, aber auch Würmer und Schnecken. Im Sommer verlassen sie ihre Verstecke nur nach Regenfällen. Je nachdem wie kalt ein Winter ausfällt, suchen sich Salamander einen Platz unter der Erde oder in einem Komposthaufen, wo die Luftfeuchtigkeit hoch genug ist und die Temperatur nicht unter Null Grad Celsius fällt. Dort verharren sie als typische Kaltblüter, deren Körpertemperatur sich der Umgebung anpasst, reglos in der Winterstarre, aus der sie erst wieder erwachen, wenn es wärmer wird.

    • Das Purpurweidenjungfernkind (Boudinotiana touranginii) ist eine Schmetterlingsart, die 2015 in den Auwäldern am Oberrhein wiederentdeckt wurde, nachdem sie zuvor als ausgestorben galt. Seinen Namen verdankt der Schmetterling der Purpurweide, an der er bevorzugt lebt.

      Name, Vorkommen und Aussehen

      Das Purpurweidenjungfernkind (Boudinotiana touranginii) gehört zu den Jungfern-kindern (Archiearinae), einer kleinen Unterfamilie der Spanner (Geometridae), die zu den Nachtfaltern gerechnet werden. Allerdings stellt es eine Ausnahme dar, denn das Purpurweidenjungfernkind ist tagaktiv. Die Jungfernkinder werden so genannt, weil sie nach dem Winter als Vorboten des Frühlings in der noch jungfräulichen Natur erscheinen. Das Purpurweidenjungfernkind wurde 1870 von den Franzosen Maurice Sand und Jean Étienne Berce als eigene Art beschrieben, nachdem sie festgestellt hatten, dass die Raupen dieses Jungfernkindes ausschließlich an der Purpurweide lebten. Die Rinde des Busches und die Weidenkätzchen sind purpurfarben. Die drei anderen, in Europa heimischen Jungfernkinder-Arten leben an Birken oder Pappeln. Das Purpurweidenjungfernkind wurde lange Zeit als eigene Art ignoriert, weil es sehr selten gefunden wird. Das liegt auch daran, dass es nur eine extrem kurze Zeit lang als Falter auftritt, und zwar schon im März, bevor die Weiden aufblühen. Noch im selben Monat legen die Falter ihre grünen Eier. Die Raupen ernähren sich vom Purpurweiden-Busch. Die Vorderflügel des ausgewachsenen Purpurweidenjungfernkinds sind graubraun gefärbt; mit dunklen gezackten Querbinden in der hinteren Flügelhälfte. Die Hinterflügel sind orange gefärbt, dunkel umrahmt und zeigen zusätzlich eine dunkle schlingenförmige Zeichnung. Die Flügelspannweite beträgt 21 – 27 Millimeter.

      Die Entdeckung – ein Highlight für die Schmetterlingsforschung

      Im März 2015 entdecken Schmetterlingsforscher vom Naturkundemuseum Karlsruhe in den Auwäldern am Oberrhein erstmals ein Exemplar des Purpurweidenjungfernkinds in Deutschland. Zuvor galt der zuletzt 1935 im Elsass gesichtete Schmetterling als ausgestorben. Wegen dieses Nachweises hatten die Karlsruher Biologen jedoch vermutet, dass es die seltene Schmetterlingsart auch auf der deutschen Rhein-Seite noch bzw. wieder geben könnte. Aber sie mussten – unterstützt von ehrenamtlichen Forschern der Entomologischen Arbeitsgemeinschaft Karlsruhe - zehn Jahre lang suchen, ehe ihnen der Falter am Ufer des südlichen Oberrheins ins Netz ging; denn, solange er sich nicht bewegt, ist er perfekt getarnt. Für die Schmetterlingskundler war es ein Highlight ihres Berufslebens. Gerade in einem gut erforschten Gebiet wie Deutschland, das eine 200-jährige Geschichte der Insekten- und Schmetterlings-Forschung hat, sind überraschende Neuentdeckungen eine Seltenheit.

      Überleben oder Aussterben?

      Die Purpurweidenjungfernkinder und ihre Raupen, die im Holz der Purpurweiden leben, haben sich den Lebensbedingungen in den Auwäldern am Oberrhein gut angepasst. Selbst Schneefälle und Hochwasser, die den Weidenbüschen zusetzen, übersteht die widerstandsfähige Art unerwartet gut. An einem Tag konnten die Forscher 53 Exemplare beobachten: Die erstaunliche Zahl ist in Zeiten des Insektensterbens ein kleiner Lichtblick. Um sicher zu gehen, dass es sich um die gesuchten Purpurweidenjungfernkinder handelt, fangen die Schmetterlingsjäger sie ein. Die Falter werden bestimmt, gezählt und begutachtet. Einige wenige werden als Belegexemplare für die Nachwelt präpariert und im Staatlichen Naturkundemuseum in Karlsruhe fachmännisch verwahrt. Die Biologen fürchten, dass die Art, die auch in Nordspanien und Zentralfrankreich heimisch ist, schon bald wieder verschwunden sein könnte. Denn auch die Zahl anderer Schmetterlingsarten, die weit häufiger vorkommen, geht zurück. Nicht wenige Arten sind vom Aussterben bedroht.

      Schlagworte: Schmetterlinge
    • Der Begriff Tomatenfisch wird als Synonym für eine Aquaponik-Anlage verwendet, die Tomatenanbau und Fischzucht kombiniert. Das geschlossene System nutzt die Ausscheidungen der Fische als Dünger für die Pflanzen. Das ressourcenschonende Verfahren könnte einen wichtigen Beitrag zur Nahrungsmittelversorgung im 21. Jahrhundert leisten.

      Was ist Aquaponik?

      Der Begriff Aquaponik setzt sich zusammen aus Aqua von Aquakultur und Ponik von Hydroponik. Hydroponik bezeichnet die Gemüsezucht ohne Erde. Auch die Aquaponik kommt ohne Erde aus. Stattdessen kommen Steinwollwürfel – i. e. ein extrem leichtes Vlies aus geschmolzenem Gestein, das große Mengen Wasser aufsaugen kann - und eine zirkulierende Nährstofflösung zum Einsatz. Das Verfahren, das Fischzucht und Landwirtschaft kombiniert, wurde in den 1980er Jahren in den USA entwickelt und seither in verschiedenen Ländern optimiert.

      Wie funktioniert die Tomatenfischzucht?

      Die Aquaponik-Anlage ist ein geschlossenes System, das aus einem Fischbecken und einem Gewächshaus besteht. Es nutzt den Umstand, dass sowohl Barsche als auch Tomaten besonders gut bei 27 Grad gedeihen. Die Fische werden mit Frischwasser versorgt, das von ihren Exkrementen verunreinigte Wasser wird zur Hydroponik-Anlage geleitet. In einem mechanischen Filter werden die Feststoffe ausgefiltert; in einem biologischen Filter wandeln Bakterien das in den Ausscheidungen der Fische enthaltene, giftige Ammonium in den Pflanzendünger Nitrat um. Anschließend werden die freiliegenden Wurzeln der Tomatenpflanzen mit dem gereinigten Kot der Fische gedüngt. Der Wasserdampf, den die Pflanzen über ihre Blätter abgeben, kondensiert am Gewächshausdach und wird als Frischwasser für die Fische wiederverwertet. Vollendet wird der Kreislauf, weil die Pflanzen das CO2, das die Fische ausatmen, in Sauerstoff umsetzen; das macht das System nahezu emissionsfrei. Die für die Erwärmung des Wassers nötige Energie stammt aus Photovoltaik- oder Biogas-Anlagen, in denen die Pflanzenreste verwertet werden; das ist energiesparend.

      Was kann man anbauen?

      Neben Tomaten sind auch Basilikum, Blumenkohl, Gurken, Auberginen, Peperoni, alle Arten von Salaten und Kräuter wie Basilikum, Petersilie, Thymian und Oregano für Aquaponik geeignet. Bei den Fischen handelt es sich meist um Streifenbarsche oder Buntbarsche wie den Tilapia; sie sind wenig anspruchsvoll und wachsen besonders schnell. Qualitativ und geschmacklich stehen die Nahrungsmittel herkömmlich angebautem Gemüse oder Fischen aus dem Meer in nichts nach.

      Die Vorteile der Aquaponik

      Die Nachfrage nach Fisch steigt; zugleich sind die Weltmeere überfischt, viele Arten vom Aussterben bedroht. Aquaponik schont die Wildfisch-Bestände und findet nah am Verbraucher statt; die Lieferwege sind sehr kurz. Bei der ressourcenschonenden, nahezu emissionsfreien, CO2-neutralen und somit nachhaltigen Aquaponik kommen weder künstlicher Dünger noch Antibiotika zum Einsatz. Da das System ein geschlossener Kreislauf ist, muss das Wasser nicht ausgetauscht oder zusätzlich gefiltert werden. Eine Überdüngung natürlicher Gewässer, die bei der Abwasserentsorgung in anderen Aquakultur-Modellen entsteht, findet nicht statt. Während man beim konventionellen Gemüse-Anbau – z. B. im spanischen Almeria - etwa 180 Liter Grundwasser für ein Kilo Tomaten braucht, kommt ein Aquaponik-System mit 35 Litern und einem Fünftel der Fläche aus. Speziell dort, wo Wassermangel herrscht, könnte die effiziente und jahreszeitenunabhängige Technologie zur Nahrungsmittelversorgung der Zukunft beitragen. Die Anlagen gibt es in unterschiedlichen Größen. Manche, die von der Urban-Farming-Bewegung auf freien Flächen, in Industriebauten oder auf Dächern in Städten errichtet werden, sind viele tausend Quadratmeter groß; es gibt aber auch Aquaponik-Systeme für Selbstversorger, die bequem ins Wohnzimmer passen.

    • Auf der schwäbischen Alb grasen Tiere, die wie Auerochsen und Urpferde aussehen. Diese sind allerdings schon längst ausgestorben. Was sind das also für Tiere, die heute dort weiden und ihrer urigen Verwandtschaft zum Verwechseln ähnlich sehen? Und welche wichtige Rolle spielen sie bei einem Artenschutzprojekt?

    • Amphibien (dt. Lurche) sind Kriechtiere, die sowohl im Wasser als auch an Land leben. Fast alle Amphibien machen im Lauf ihres Lebens eine Metamorphose durch: Ihre Gestalt verändert sich und sie wechseln den Lebensraum, vom Wasser zum Land. Die ersten Amphibien lebten vor etwa 400 Mio. Jahren.

      Evolution

      Amphibien sind die älteste Gruppe – bzw. das älteste Taxon - der landlebenden Wirbeltiere, d. h. sie haben eine Wirbelsäule. Die ersten Amphibien lebten vor etwa 400 Mio. Jahren. Da sie als erste Lebewesen vom Wasser aufs Land übersiedelten, stellen sie das Bindeglied zwischen wasserlebenden und landlebenden Arten dar. Das signalisiert schon der Name, der eine Substantivierung des altgriechischen Adjektivs amphibios ist, was auf Deutsch doppellebig heißt. Die heute existierenden Amphibien werden in drei Ordnungen unterteilt: Froschlurche (Frösche, Kröten), Schwanzlurche (Salamander, Molche, Grottenolme, Axolotl) und Schleichenlurche (Ringelwühle). Die größten lebenden Amphibien der Welt sind die chinesischen Riesensalamander, die bei einem Gewicht von mehr als 40 Kilogramm bis zu zwei Meter lang werden. Da sie seit 170 Millionen Jahren auf der Welt sind und sich kaum verändert haben, gelten die vom Aussterben bedrohten Tiere als lebende Fossilien. In Deutschland sind 21 Arten von Amphibien - auf Deutsch nennt man sie auch Lurche – heimisch; dazu gehören Salamander, Molche, Unken, Kröten und Frösche.

      Entwicklung und Metamorphose

      Das Leben der Amphibien ist eng an das Wasser gebunden. Im Frühjahr suchen sie ihre Laichgewässer auf, wo sie Eier (Laich) ablegen. (Nur der Alpensalamander bringt schon voll entwickelte Jungtiere zur Welt.) Dieser Laich wird im Wasser befruchtet; anders als bei Säugetieren geschieht dies ohne Kopulation. Aus dem Laich schlüpfen die Larven, die im Wasser leben ehe sie eine Metamorphose zum erwachsenen Tier durchlaufen. Dabei verändert sich ihre Gestalt; sie verlieren ihre Kiemen und bilden eine Lunge aus. Das bekannteste Beispiel dafür ist der Frosch: Aus dem befruchteten Laich entwickeln sich zunächst Kaulquappen, die sich binnen einiger Wochen in Frösche verwandeln. Während die Kaulquappen als Wasserbewohner durch Kiemen atmen, atmen Frösche über ihre Lungen, die sich während der Metamorphose herausbilden. Nach Abschluss der Metamorphose wechseln die meisten Amphibien den Lebensraum. Ausgewachsene Amphibien leben an Land und im Wasser, sind aber stark an Feuchtbiotope gebunden.

      Merkmale

      Im Gegensatz zu Säugetieren, deren Körpertemperatur immer gleich ist, sind Amphibien wechselwarme Tiere, deren Körpertemperatur sich der Temperatur ihrer Umgebung anpasst. So wird ihnen im Wasser – oder auch im Gebirge - nicht kalt. Zudem werden Amphibien von ihrer dicken, kaum verhornten und wasserdurchlässigen Haut warm gehalten. Sie wird über spezielle Schleimdrüsen ständig befeuchtet und hat – anders als Reptilien wie Eidechsen und Schlangen - kein Schuppenkleid. Viele Amphibien-Arten sind mit Giftdrüsen auf der Haut ausgestattet, die sie vor ihren Feinden schützen. Amphibien verfügen über zwei Vorder- und zwei Hinterbeine, wobei die vorderen Füße nur vier Zehen haben. Bei manchen Arten treten die Extremitäten in verkümmerter Form auf. Amphibien besitzen nur einen einzigen Ausgang für Anus und Harnröhre, die sogenannte Kloake. Fast alle Amphibien haben einen gut ausgeprägten Sehsinn. Sie ernähren sich hauptsächlich von Würmern, Schnecken, Insekten und anderen Gliedertieren. Im Winter halten Amphibien Winterstarre; sie erstarren, indem sie alle Flüssigkeit aus ihrem Körper abgeben. Ihre sonst glitschige und feuchte Haut wird trocken und rau.

      Schutzbedürftigkeit

      In Deutschland sind die Amphibien-Bestände in den letzten fünfzig Jahren stark zurückgegangen, weil die Lebensräume der Tiere zerstört werden. Viele kleine Gewässer sind Baumaßnahmen zum Opfer gefallen. Auch die Zunahme des Verkehrs und die Dichte des Straßennetzes stellen eine Gefährdung dar. Zahllose Erdkröten werden bei ihren Wanderungen zu den Laichgewässern Opfer des Straßenverkehrs. Deshalb stellen Naturschützer im Frühjahr entlang von Straßen, die in Gegenden mit intensiver Amphibienwanderung liegen, niedrige Zäune auf und graben Fangeimer ein. So können sie Kröten vor dem Unfalltod retten und zu ihren Laichgewässern bringen. Effektiver als solche Krötenzäune, die über einen Zeitraum von zwei bis drei Monaten betreut werden müssen, sind Straßensperrungen oder Amphibientunnel. Seit 1980 stehen alle Amphibienarten gemäß Bundesartenschutzverordnung unter besonderem Schutz. Die Renaturierung von Kleingewässern hilft, Lebensräume für Amphibien zu schaffen; das kann auch ein Gartenteich sein.

    • Kuhfladen und Pferdeäpfel sind der Lebensraum vieler Insekten wie Fliegen und Käfer. Manche – wie der Dungkäfer – ernähren sich friedfertig vom Dung, andere, räuberische Arten, nutzen den Dung als Jagdrevier. Aber alle leisten einen wichtigen Beitrag für den Nährstoffkreislauf und das Ökosystem.

      Käfer, Fliegen und ihr Beitrag zum Ökosystem

      Für manche Tiere ist der Kot anderer Tiere ein Festmahl. Was Pferde und vor allem Rinder beim Stoffwechsel als unbrauchbar ausscheiden, ist für Insekten und anderes Getier notwendige Lebensgrundlage. Sie nutzen den Dung, bei dessen Zersetzung Wärme entsteht, als Eiablage und finden darin Nährstoffe. In Kuhfladen und Pferdeäpfeln gedeihen zahlreiche Fliegen- und Käfer-Arten, die sich – wie der Stierkopf-Dungkäfer aus der Familie der Blatthornkäfer - im Laufe der Evolution auf die Ausscheidungen großer Haus- und Wildtiere spezialisiert haben. Zusammen mit anderen Dung-Liebhabern sorgen sie dafür, dass Weideflächen nicht im Mist versinken, denn eine Kuh hinterlässt dort täglich etwa zehn Fladen von je zwei Kilogramm Gewicht. Tausende Kuhdung-Besucher helfen mit, einen Fladen binnen 40 Tagen abzubauen und aus dem Kuhmist wertvollen Humus zu machen. Die Biomasse, also das Gesamtgewicht von Insektenlarven und ausgewachsenen Insekten, die sich im Laufe eines Jahres in den Ausscheidungen einer Kuh finden, beläuft sich auf 120 Kilogramm. Indem sie Nährstoffe in den Boden bringen und ihn durchmischen, leisten Dungkäfer und ihre Helfer und Gegenspieler einen wichtigen Beitrag zum Nährstoffkreislauf. Ohne ihr produktives Recycling würde das Ökosystem Weideland nicht funktionieren. Wie geht das im Einzelnen vor sich?

      Ein Kuhfladen wird zersetzt...

      Die verschiedenen Verfallsstadien eines Kuhfladens locken jeweils unterschiedliche Lebewesen an, die in ihrem Zusammenspiel eine komplexe Leistung vollbringen. Solange der Fladen noch weich ist, deponieren z. B. die Weibchen der Gelben Dungfliegen ihre Eier darin. Nach zwei Tagen tummeln sich unzählige Maden und Larven im Fladen. Dungkäfer verbringen hier ihr ganzes Leben: Sie vertilgen den Kuhdung, machen die darin noch enthaltenen Nährstoffe für Pflanzen verfügbar und geben den Weiden so etwas von dem zurück, was die Kühe abgegrast haben. Einige Dungkäfer-Arten arbeiten den Kot in den Boden ein: Dafür graben sie Gänge, die sie mit Dung füllen, in dem sie wiederum ihre Eier ablegen. Wenn ihre geschlüpften Larven den Dung verzehren, lockern die nun leeren Gänge den Boden auf und versorgen ihn mit Sauerstoff und Nährstoffen. Das kommt dem Wachstum der Pflanzen zugute. Die Dungkäfer bringen Pflanzensamen, die die Weidetiere ausgeschieden haben, unter die Erde; dort können die Samen keimen. So helfen die Käfer, Pflanzenpopulationen zu erhalten. Parasiten, die über den Verdauungstrakt der Weidetiere in deren Dung gelangen, vermehren sich nur begrenzt, weil Dungkäfer den Kot schnell in den Boden bringen. Bliebe der Dung zu lange liegen, würde die Zahl der Parasiten problematisch anwachsen. In dem noch feuchten und von Gängen durchzogenen Kuhfladen entwickeln sich Pilze, Hefen und Bakterien, die ihn weiter abbauen. Das lockt Milben, Hundertfüßer und Regenwürmer an, aber auch Fadenwürmer, Schwingfliegen oder die goldgelb behaarte Mistfliege. Nur ihre Larven sind Dungfresser, die Fliegen selbst leben zum Teil räuberisch und machen Jagd auf andere Kotbewohner. Das tun auch Käfer aus der Familie der Kurzflügler und ihre Larven, während die Hornissen-Raubfliege wiederum Käfer jagt. Nicht zuletzt ernähren sich auch Vögel und Schlangen von den Insekten. Der „alternde“ Fladen wird von verschiedenen Pilzarten besiedelt, die den Dung – u. a. im Zusammenspiel mit dem Zwergkäfer Ptenidium pusillum - weiter abbauen, ehe in der letzten Phase zum Beispiel der Kleine Wiesenwurm seinen Auftritt hat. Täglich verdaut er ein Prozent seines Gewichtes an Dung.

      Wenn Kuhfladen fehlen...

      Da in Deutschland die industrielle Massentierhaltung die Weidehaltung vielerorts abgelöst hat, gibt es immer weniger Kuhfladen auf Wiesen. So schwindet der natürliche Lebensraum von Mistkäfern, Gemeinen Dungkäfern und weiteren Insekten. Ein anschauliches Beispiel geben die Fliegen, deren Weibchen in den Sommermonaten alle drei Tage im Schnitt 150 Eier im Kuhmist ablegen. Bei guten Bedingungen sind bis zu 15 Fliegen-Generationen pro Jahr möglich: 150 Eier in der ersten Generation,10 250 in der zweiten, 843 750 in der dritten und über 63 Millionen in der vierten Generation. So kommt ein Fliegenpärchen theoretisch auf Billionen von Nachkommen mit Millionen Tonnen Biomasse. Diese Fliegen sind ein wichtiges Nahrungsmittel für Schwalben, die früher in jeder Scheune ihre Nistplätze hatten. Mit dem Aussterben der Viehhaltung und dem Verschwinden der damit verbundenen Stallungen, Weiden und Misthaufen bleiben die Fliegen fern und damit auch die Schwalben. In Zeiten des Insektensterbens ist jeder Misthaufen deshalb ein Zeichen der Hoffnung.

      Schlagworte: Insekten, Käfer
    • Wie entstand der Kaiserstuhl?

      Der Kaiserstuhl in der Oberrheinebene im Südwesten Baden-Württembergs ist ein kleines Mittelgebirge Aber wie entstand der Kaiserstuhl eigentlich? Eine Zeitreise mehr als 40 Millionen Jahre zurück zeigt die Entwicklung dieser Region, die eine bewegte geologische Geschichte hat.

    • Wie entstanden die Höhlen der schwäbischen Alb?

      Die Schwäbische Alb gilt als eine der höhlenreichsten Regionen in Europa. Weit über 2000 Höhlen sind bekannt und einige der schönsten sind für Besucher zugänglich. Aber wie entstanden die Höhlen eigentlich?

    • Mit etwas Geduld und Glück kann man in einem Kalksteinbruch auf der schwäbischen Alb Fossilien finden. Zum Beispiel versteinerte Gehäuse oder Skelette von Meerestieren. Aber - ein Meer auf der schwäbischen Alb? Wie kann das sein? Und wie wird so ein Meerestier eigentlich zum Fossil?

    • Kalktuff ist ein besonderes Gestein. Luftig, leicht, aber doch fest. Wegen seiner Belastbarkeit und Witterungsbeständigkeit wurde Kalktuff von der schwäbischen Alb früher häufig als Baustoff verwendet. Aber wie entsteht Kalktuff eigentlich und welche Rolle spielt das Wetter dabei? Wetterexperte Sven Plöger weiß die Antwort.

    • Wie findet man Trüffel?

      Hauchdünn über ein Pastagericht geraspelt... so liebt sie der Feinschmecker! Trüffelpilze gelten als Delikatesse und sind nichts für den schmalen Geldbeutel. Das Kilogramm kann bis zu mehrere hundert Euro kosten. Nicht nur der Anbau, sondern vor allem auch die Suche nach den Edelpilzen gestaltet sich als echte Herausforderung.

    • Zur Standard-Ausrüstung jedes Schiffes gehört ein Echolot. Wozu dient das Gerät und was „macht“ es genau?

    • Linsen werden auf sandigen und kalkhaltigen Böden in Mischkultur mit einem Getreide angebaut, das als Rank-Hilfe dient. Ausgesät wird die eiweißhaltige Hülsenfrucht zwischen April und Mai, geerntet per Mähdrescher im Spätsommer.

      Herkunft und Verbreitung

      Seit den Anfängen des Ackerbaus ist die zur Familie der Hülsenfrüchtler und der Unterfamilie der Schmetterlingsblütler gehörende Linse (Lens culinaris) - auch Küchen-Linse genannt - eine der wichtigsten Nutzpflanzen. Ursprünglich stammen Linsen aus dem Mittelmeerraum und Kleinasien. Heute sind Kanada und Indien die weltweit größten Produzenten, in Europa werden Linsen v. a. in der Türkei, in Spanien und in Frankreich erzeugt. Im Jahr 2017 wurden weltweit etwa 7,6 Millionen Tonnen Linsen geerntet. Es gibt verschiedenste Arten wie etwa Rote und Gelbe Linsen, die Beluga-Linsen und die Puy Linsen. Allein in Indien sind über 50 Sorten verbreitet. Verzehrt werden ausschließlich die Samen. Linsensamen sind braun, schwarz oder grau-grün; nach dem Schälen je nach Sorte gelb oder rot-orange.

      Anbau und Ernte

      Linsen können auch auf schlechten Böden und unter ungünstigen klimatischen Bedingungen angebaut werden. Am besten gedeihen sie auf kargen, mergeligen, sandigen und kalkhaltigen Lehmböden, auf denen sich andere Kulturen wegen des Nährstoffmangels nicht mehr entwickeln. Die anspruchslose Linse benötigt in der Regel keine zusätzliche Düngung. Wichtig für einen erfolgreichen Anbau ist die Niederschlagsverteilung während der Vegetationsdauer. Zu viel Regen, vor allem zur Blüte und zur Erntezeit sind kritisch. Die Aussaat erfolgt zwischen Ende April und Anfang Mai. Angebaut werden Linsen zumeist als Mischkultur gemeinsam mit einem Getreide wie Hafer oder Gerste, das als Rankhilfe dient. Die Samen werden etwa vier bis fünf cm tief in die Erde gesteckt. Die Linse wächst als einjährige krautige Pflanze und wird zwischen 10 und 50 cm hoch. Der aus einer kleinen Pfahlwurzel herauswachsende, dünne, verzweigte und rippige Stängel ist flaumig behaart. Die wechselständigen Laubblätter sind paarig gefiedert mit drei bis acht Paaren von Fiederblättchen. Die Erntereife ist erreicht, wenn sich die untersten Hülsen braun färben. Da Linsen über einen langen Zeitraum blühen, reifen die Hülsen an einer Pflanze oft unterschiedlich schnell. Das kann die Festlegung des Erntezeitpunkts erschweren. Die Ernte sollte deshalb so lange wie möglich hinausgezögert werden. Da Linsen und Getreidekörner gleichzeitig mit einem Mähdrescher geerntet werden, müssen sie anschließend in einem technisch aufwendigen Verfahren getrennt werden. Je nach Witterung und Anbaubedingungen schwanken die Erträge zwischen 200 und 1000 kg pro Hektar. Linsen sind mehrere Jahre haltbar. Während der Lagerung dunkeln sie nach.

      Die Renaissance der Linse in Deutschland

      In Deutschland sind die Ernteerträge zu gering und der technische Aufwand ist zu hoch, als dass man Linsen zu international konkurrenzfähigen Preisen anbauen könnte. Aber immerhin werden sie wieder angebaut! Zwischen den 1960er und den 1980er Jahren war die Produktion vollständig zum Erliegen gekommen; dann besann man sich auf der Schwäbischen Alb eines Besseren. Das war nicht einfach. Da die heimischen Sorten vermeintlich ausgestorben waren, musste man auf französisches Saatgut zurückgreifen. Erst 2006 wurden Späths Alblinse I und Späths Alblinse II in der Wawilow-Saatgutbank im russischen St. Petersburg wiederentdeckt. 2007 erhielten die Bauern der seit 2001 bestehenden Öko-Erzeugergemeinschaft „Alb-Leisa“ wenige hundert Linsensamen, die sie zwischen 2008 und 2011 im Gewächs-haus, unter Hagelschutznetzen und zuletzt im Freiland vermehrten. Seit 2012 bieten sie die beiden historischen Alblinsen-Sorten wieder zum Verkauf an. 2019 betrug die Anbaufläche in Baden-Württemberg 640 Hektar, davon wurden ca. 80 % ökologisch bewirtschaftet. Der Vertrieb spezieller Sorten als regionale Spezialität geschieht über Erzeugergemeinschaften oder im Direktverkauf in Hofläden. Ein Teil dieser Linsen wird in der regionalen Küche – z. B. „Linsen mit Spätzle und Saitenwürstle“ in Schwaben - oder als Spezialität in der gehobenen Gastronomie angeboten. Linsen sind leichter verdaulich als Erbsen und Bohnen. Ihr hoher Eiweiß- und Zink-Gehalt macht sie besonders für Vegetarier zu einem wertvollen und preiswerten Nahrungsmittel.

    • Wie wird Allgäuer Käse gemacht?

      Wer Käse liebt, weiß den Allgäuer Käse besonders zu schätzen. Aber wie wird eigentlich aus der Milch der Kühe, die auf den Bergwiesen saftige Gräser und Kräuter weiden, ein Käselaib mit dem ganz besonderen, würzigen Aroma?

    • Das weltweite Phänomen des Klimawandels verschont auch den Schwarzwald nicht. Die Zunahme von heißen Sommern, milden Wintern und Extremwetterlagen werden die Flora und Fauna des größten deutschen Mittelgebirges in den kommenden Jahrzehnten verändern. Erste Auswirkungen sind schon jetzt spürbar.

      Der Schwarzwald

      Der Schwarzwald Im Südwesten von Baden-Württemberg ist das größte und mit Gipfeln wie dem Feldberg (1.493 m) und dem Belchen (1.414 m) auch das höchste deutsche Mittelgebirge. Zudem ist er eines der größten geschlossenen Waldgebiete in Deutschland, das heute zu 80 Prozent aus Tannen und Fichten besteht. Ursprünglich war der Schwarzwald ein Mischwald aus Laubbaumarten und Tannen; Fichten wuchsen nur in den Höhenlagen. Die intensive Nutzung (Rodungen, Erzabbau, Glashütten, Köhlerei) führte dazu, dass der Baumbestand Mitte des 19. Jahrhunderts in manchen Gegenden fast vollständig abgeholzt war. Vor allem im Nordschwarzwald bestimmten Busch- und Grünland die Vegetation. Das machte umfangreiche Aufforstungen notwendig, bei denen überwiegend Fichten gepflanzt wurden; denn Deutschlands wichtigste Wirtschaftsbaumart wächst schnell und gedeiht auch in kargen Gegenden gut.

      Klimawandel –Temperaturanstieg und Wetterextreme

      Der Weltklimarat erwartet, dass die Zahl, Dauer und Intensität von Hitzewellen und Dürren, aber auch von Wetterextremen wie Starkregen und Hochwasser in den nächsten Jahrzehnten zunehmen werden. Auch Baden-Württemberg wird davon nicht verschont bleiben. Erste Folgen des Klimawandels sind schon jetzt nicht mehr zu übersehen. Deshalb hat das Land 2015 ein Klimaschutzgesetz verabschiedet, das eine laufende Berichterstattung zum Thema vorschreibt. Der erste Bericht widmet sich vor allem dem drastischen Temperaturanstieg der vergangenen Jahrzehnte. Der März 2014 war in Baden-Württemberg der wärmste März seit Beginn der Wetteraufzeichnungen vor 130 Jahren. Die durchschnittliche Jahrestemperatur in allen Regionen des Landes ist binnen 30 Jahren um ein Grad Celsius auf 10,1 Grad Celsius gestiegen. Die Zahl der warmen Tage (über 25 Grad Celsius) hat von 31 auf 42, die der heißen Tage (über 30 Grad Celsius) von fünf auf neun pro Jahr zugenommen. So genannte Eistage sind seltener geworden. Der vergleichsweise höchste Temperaturanstieg wurde auf dem Feldberg gemessen: Dort stieg die Jahrestemperatur seit den 1950er Jahren im Durchschnitt um 1,6 Grad Celsius und lag 2015 im Mittel bei 5,4 Grad Celsius. Im Murgtal hat die Obstblüte in den vergangenen 25 Jahren im Schnitt 13 Tage früher eingesetzt als im Vergleichszeitraum zuvor. Kommt es dann zu Spätfrösten, ist der Ertrag erheblich bedroht. Je nach Szenario könnte die Durchschnittstemperatur in Baden-Württemberg bis zum Ende des Jahrhunderts um 2,5 bis 3,6 Grad Celsius ansteigen. Wasserversorger im Land sind schon jetzt alarmiert, da lokale Trinkwasserquellen in besonders trockenen Jahren wie 2018 an ihre Grenzen kamen.

      Klimawandel im Schwarzwald – Folgen für die Flora

      Auch im Schwarzwald hinterlassen trocken heiße Sommer und milde Winter ihre Spuren. Normalerweise bestimmen geringe Temperaturschwankungen und hohe Niederschläge, vor allem im Winter, das Klima dieses Naturraumes. Jetzt leiden die Skipisten der wichtigsten Tourismus-Region Baden-Württembergs unter Schnee-mangel. Die sommerliche Trockenheit und der damit einhergehende Befall durch Borkenkäfer setzen vor allem Fichten, aber auch Tannen und Kiefern zu. Kommt noch starker Wind hinzu, führt das zu regelrechten Kahlschlägen. Ganze Waldstücke sind bereits abgestorben. Das Erscheinungsbild und die Pflanzenwelt des Schwarzwalds werden sich in den kommenden Jahrzehnten verändern. Baumarten, die heute in tieferen Lagen beheimatet sind, drängen in höhere Regionen, wo sie besser mit dem sich verändernden Klima zurechtkommen. Der Anteil an Fichten wird langfristig sinken, der Anteil an hitzeresistentem Mischwald (Buche, Bergahorn, Vogel- und Mehlbeere) wird steigen. Wachsen könnte auch der Bestand an einheimischen Weißtannen und aus Nordamerika eingeführten Douglasien, da beide Arten mit der sommerlichen Hitze und Trockenheit vergleichsweise gut zurechtkommen. Die anspruchslosen und schnell wachsenden Douglasien gelten als die produktivere Ersatzbaumart; es gibt jedoch Zweifel, ob das Ökosystem Schwarzwald sie in großer Zahl verträgt. Forscher bevorzugen für die Hochlagen Weißtannen, denen sie eine vorteilhaftere Wirkung auf die Biodiversität zuschreiben.

      Klimawandel im Schwarzwald – Folgen für die Fauna

      Wetterextreme setzen nicht nur der Flora, sondern auch der Fauna zu. Starkregen im Frühling zerstört die Nester offen brütender Vögel wie des Zitronenzeisigs, dessen Bestand in kurzer Zeit von 300 Paaren auf Null gefallen ist. Auch kälteliebende Vogelarten wie die Ringdrossel leiden unter dem Temperaturanstieg. Winterschläfer wie etwa der Gartenschläfer sind gefährdet, weil milde Winter ihren Winterschlaf stören: Die Tiere, die im Herbst ihre Körpertemperatur senken, nehmen während des Winterschlafs keine Nahrung auf. Die Energie für die verlangsamten Stoffwechselaktivitäten stammt aus den im Sommer angefressenen Fettdepots. Kommt ihr Stoffwechsel zu früh wieder in Gang, können die Fettreserven zu schnell verbraucht werden und die Tiere im schlimmsten Fall verhungern. Während die einen leiden, verbessern sich die Lebensbedingungen anderer: Zecken, die Krankheiten wie Hirnhautentzündung oder Borreliose übertragen, haben kein Problem mit Wärme und Feuchtigkeit. Sie kommen inzwischen auch in den höheren Lagen vor, die sie früher mieden, weil sie zu kalt und zu trocken für sie waren. Und im Oberrheingraben wurde schon die asiatische Tigermücke gesichtet, die das gefährliche Dengue-Fieber übertragen kann.  Pessimistische Prognosen sehen den Nordschwarzwald bis 2100 in Klimazonen rutschen, wie sie derzeit in Südfrankreich zu finden sind. Die Optimisten setzen darauf, dass sich die Wälder dem Klimawandel anpassen und mit der Zeit stabiler gegenüber Klimaveränderungen und sogar artenreicher werden.

  • NWA

    • Wir schicken einen Rennwagen mit Elektromotor an den Start - betrieben mit Batterien aus Zitronensaft und Kupfer- oder Magnesium-Elektroden. Eine Strecke von 200 Metern soll er bewältigen. Ob das zu schaffen ist?

    • Eine Batterie lässt sich aus Kohle, Metall, Papier, Flüssigkeit und Draht basteln. Unser Team belädt einen Anhänger mit solchen Batterien, um damit eine richtige Lokomotive anzutreiben. Die Lok ist zwar klein aber richtig schwer. Kann sie mit diesem Antrieb auf große Fahrt gehen?

    • Ein Solarballon in Form eines Wals: Wenn die Sonne ihn erwärmt hat, soll er mit Ballonfahrerin aufsteigen. Wird die Kraft der Sonne dafür reichen?

    • Insekten haben zum Teil eindrucksvolle Stech-, Saug- und Beißapparate. Aber können sie auch schmecken, was sie zu sich nehmen?

      Schlagworte: Geschmackssinn, Insekt
    • Ein schwerer japanischer Sumoringer wird an einem mit Deckel versehenen Glas in die Höhe gezogen. Die Kraft des Luftdrucks entscheidet, ob der Ringer schwebt oder abstürzt.

    • An den Seiten eines Buches ziehen wir einen Sumoringer in die Höhe. Die Reibungskräfte der ineinander verschränkten Buchseiten sollen ihn in der Luft halten. Wird er schweben oder zu Boden stürzen?

    • Pumpen wir mit einer Luftpumpe Luft in einen Ball, entsteht ein hoher Druck in der Pumpe, denn die Luft wird beim Pumpen komprimiert. Diese Druckluft wollen wir nutzen, um ein Auto zum Fahren zu bringen.

      Schlagworte: Luft, Luftdruck, Pumpe
    • Wenn sich ein gedehntes Gummiband wieder zusammen zieht, übt es Kraft aus - Spannkraft. Mit der Spannkraft gebündelter Gummibänder wollen wir einen Propeller starten: Als Erstes gilt es, Tausende von Gummibändern zusammenzuknüpfen…

    • Kamele besitzen große, flache Sohlen, die das Körpergewicht hervorragend verteilen. Unser Eiertest soll zeigen, wie gut diese Gewichtsverteilung tatsächlich ist: Ein Kamel wird auf 500 Eier gestellt.

    • Wer etwas Schweres anheben möchte, braucht starke Muskeln – oder einen Flaschenzug. Was aber, wenn ein Klavier zu stemmen ist und nur ein einzelner Mann am Zugseil steht? Wird er es schaffen, das Klavier hochzuziehen, nur mit Hilfe mehrerer Flaschenzüge?

      Schlagworte: Gewicht, Kraft, Seil, Ziehen
    • Der Schal einer Dame klemmt fest unter dem Rad eines Lastwagens. Kann ein einzelner Mann, nur mit Hilfe eines Hebels, einen so gewichtigen Wagen anheben?

    • Was passiert eigentlich, wenn ein 139 Meter hoher Stahlturm von der Sonne erwärmt wird? Mit Thermometern messen wir, wie sich die Temperatur am Turm im Laufe eines Tages verändert. Außerdem benutzen wir ein spezielles Messgerät, um jeweils die genaue Höhe des Turms zu ermitteln.

    • Wir untersuchen eine Flüssigkeit mit erstaunlichen Eigenschaften. Wird sie unter Druck gesetzt, fließt sie nicht davon, sondern verfestigt sich, wird dann aber gleich wieder flüssig. Wir lassen mehrere Sportler ein Becken durchqueren, das mit dieser Flüssigkeit gefüllt ist. Läufer, Weitspringer und Turner müssen heftigen starken Druck ausüben; nur dann kann das Flüssige fest werden.

    • Unterschiedliche Magnetpole ziehen sich an, gleiche Pole stoßen sich ab. Diese Abstoßungskraft werden wir nutzen: Wir wollen eine mit Magneten bestückte Platte über einer zweiten, ebenso bestückten, Platte schweben lassen – wie einen fliegenden Teppich.

    • Eine Glühbirne soll mit Hilfe des Erdmagnetfeldes zum Leuchten gebracht werden. Dazu schwingen unsere Leute Drahtseile entlang der Magnetbahnen. Können wir Kräfte der magnetischen Pole der Erde so nutzen, dass unsere Glühbirne angeht?

    • Wir erhitzen Wasser in einem verschlossenen Rohr: Großer Druck entsteht. Wenn wir das Rohr öffnen, wird das Wasser zu Dampf und dehnt sich explosionsartig aus. Ob wir mit Hilfe einer solchen Dampfexplosion einen Ball aus dem Rohr herausschießen können?

    • Professionelle Sänger und Sportler versuchen mit bloßer Stimmgewalt ein Glas zerspringen zu lassen. Ob sie das schaffen?

      Schlagworte: Glas, Klang, Stimme, Ton, Tongenerator
    • Wir wollen mit einer schönen Unbekannten telefonieren. Die Ausrüstung: zwei Becher und eine sehr lange Schnur. Die Verbindung kommt nur zustande, wenn Becher und Schnur die Stimmen übertragen können. Und bis es soweit ist, geht so einiges schief.

    • Ein Windrad dreht sich, wenn sich ein Wärme abstrahlendes Objekt darunter befindet. Die erwärmte Luft steigt nach oben, Aufwind entsteht und setzt das Windrad in Bewegung. Ob wohl auch Körperwärme Aufwind erzeugen kann?

      Schlagworte: Auftrieb, Luft, Wind, Wärme
    • Gebündeltes Licht, das sehr energiereich ist - das ist ein Laserstrahl. Wie vielseitig Laser eingesetzt werden können, zeigt dieser Film.

    • Ein Lied zum Anfassen und immer wieder neu Abspielen ist das Ziel dieses Experiments. Dazu gießen wir die Vibration der Töne in eine Form. Es entsteht eine Welle. Mit einem Wagen, einer selbstgebauten Lautsprecherbox und einer kleinen Nadel wollen wir dieser Welle wieder die ursprünglichen Töne entlocken.

    • Auf einer großen Wand wollen wir einen Regenbogen erzeugen - mit Hilfe der Sonne und mit Glasperlen statt Regentropfen. Wenn das gelingt, sollen unsere Leute über diesen Regenbogen spazieren - ein ehrgeiziges Vorhaben!

      Schlagworte: Licht, Regen, Sonne, Wetter
    • Über einen langen Schlauch sollen zweitausend Liter Wasser von einem Wassertank in einen anderen gelangen und dabei eine Höhe von zehn Metern überwinden. Ob das gelingt?

    • Mit hohem Wasserdruck und einem scharfen Wasserstrahl rücken wir einem Apfel auf die Pelle. Mal sehen, ob er sich zerschneiden lässt.

    • Aus kreisförmig angeordneten Spiegeln bauen wir einen Solarkocher. Die Spiegel bündeln die Sonnenstrahlen auf den Boden einer Pfanne. Ob sich darin ein Steak braten lässt?

    • Ein Team von Radprofis will genügend Strom erzeugen, um ein Karussell in Schwung zu bringen. Ob das mit reiner Muskelkraft gelingt?

    • Wir wollen ein 100 Kilogramm schweres Gefährt in Gang bringen, mit einem Antrieb aus Ballonluft. Dazu benötigen wir sehr viele Ballons und ein ideales Verhältnis von Antriebsluft und Gewicht.

    • Ein langes, schweres Stahlrohr soll zum Wippen gebracht werden. Die erlaubten Hilfsmittel sind ein paar Gasbrenner und mehrere Kugeln, die in das Rohr gefüllt werden. Wir erhitzen eine Seite und lassen die andere abkühlen. Wie verhalten sich dabei die Kugeln und kann dieses Verfahren das schwere Stahlrohr in Bewegung setzen?

    • Viele Menschen wackeln nervös mit dem Knie. Wir wollen die Energie dieser Bewegung nutzen, um 10 000 Leuchtdioden zu betreiben. Ein kleines Plättchen, das wir an den Knien unserer Testpersonen befestigen, soll uns dabei helfen.

    • Einen Elektromagneten selbst zu bauen, ist kein Problem. Aber kann so ein Magnet auch das Gewicht eines erwachsenen Mannes halten?

    • Alles ist fein gerichtet, der Tisch ist gedeckt. Und jetzt: ziehen wir mit einem Ruck die Tischdecke weg. Wie verhindern wir einen Scherbenhaufen?

    • In der Evolution des Menschen gab es vor langer Zeit eine entscheidende Entwicklung - den Schritt zum aufrechten Gang. Welcher unserer Vorfahren hat ihn vollzogen? Und wann?

    • Wir verfolgen den Weg des Lichts vom betrachteten Objekt zur Netzhaut. Dabei wird klar: Vom Augapfel hängt es ab, ob jemand kurz- oder weitsichtig ist.

    • Ebbe und Flut sind regelmäßig wiederkehrende Wasserbewegungen der Ozeane. Die Ebbe bezeichnet den Zeitraum, in dem das Wasser sinkt, die Flut die Spanne, in der das Wasser steigt. Dies geschieht im Rhythmus von 12 Stunden und 25 Minuten. Dabei senken und heben sich die Ozeane um bis zu 20 Meter. In Deutschland kann man das Phänomen der Gezeiten besonders an den Küsten beobachten: An der Nordsee gibt es innerhalb eines Tages zweimal Hoch- und zweimal Niedrigwasser. Den in Metern gemessenen Unterschied zwischen Hoch- und Niedrigwasser bezeichnet man als Tidenhub.

      Der Mond verursacht Ebbe und Flut

      Der Mond bestimmt mit seiner anziehenden Wirkung auf die Erde die Gezeiten. Dabei wirkt der Mond wie ein Magnet und zieht das Wasser von der Erde weg. Auf der mondzugewandten Seite der Erde entsteht dadurch ein Flutberg, ebenso wie auf der mondabgewandten Seite. Beide Flutberge sind etwa einen halben Meter hoch. Dazwischen liegen zwei Ebbtäler. Innerhalb eines Tages dreht sich die Erde unter den beiden Flutbergen hindurch.

      Anziehungskraft und Fliehkraft bestimmen die Gezeiten

      Verantwortlich für die Entstehung von Ebbe und Flut sind zwei Kräfte: die Gravitationskräfte des Mondes und die Fliehkraft. Beide Kräfte wirken im Zusammenspiel mit dem Erde-Mond-System, das um einen gemeinsamen Schwerpunkt im Inneren der Erdkugel rotiert: Auf der mondzugewandten Seite wirkt die Anziehungskraft des Mondes stärker, auf der abgewandten Seite dominiert die Fliehkraft. Dadurch entstehen auf beiden Seiten der Erde Flutberge.

      Einfluss der Sonne

      Je nach ihrem Stand kann auch die Sonne das Spiel der Gezeiten beeinflussen und die Kraft des Mondes verstärken. Bei Voll- und Neumond wirken Sonne und Mond zusammen: die Folge, es kommt zu starkem Hochwasser, einer so genannten Springtide. Bei Halbmond sind Ebbe und Flut weniger stark ausgeprägt, da die Kräfte von Sonne und Mond in unterschiedliche Richtungen weisen. Dieses Phänomen des „Niedrigwassers“ nennt man Nipptide.

    • Warum wird es jeden Tag hell und jede Nacht dunkel? Und warum sind die Tage bei uns im Sommer länger als im Winter?

    • Betrachtet man den Himmel an einem Sommertag vom Weltall aus, ist er schwarz, das Licht der Sonne gleißend weiß. Von der Erde aus gesehen wirken die Farben anders: Der Himmel ist strahlend blau, die Sonne wirft ein warmes, gelbes Licht.

      Blauer Himmel durch farbiges Licht der Sonne

      Warum der Himmel von der Erde aus betrachtet blau erscheint, liegt an der Beschaffenheit des Sonnenlichtes. Das Licht der Sonne besteht aus einzelnen Lichtstrahlen, die sich wellenartig fortbewegen. Sieht man alle Lichtstrahlen auf einmal, erscheint das Licht weiß. Wird das Licht jedoch abgelenkt, beispielsweise durch ein Prisma, dann werden einzelne Spektralfarben sichtbar wie Rot, Orange, Gelb, Grün, Violett oder Blau. Die Lichtstrahlen der Sonne bestehen somit aus bunten Farben.

      Das Rayleigh-Phänomen erklärt den blauen Himmel

      Auf ihrem Weg zur Erde durchdringen die Sonnenstrahlen die Erdatmosphäre. Diese besteht aus unsichtbaren Gasmolekülen, vor allem aus Stickstoff- und Sauerstoff. Treffen die Lichtstrahlen der Sonne auf diese kleinen Teilchen, werden sie abgelenkt, beziehungsweise gestreut. Da jede Farbe eine andere Wellenlänge hat, ist die Streuung unterschiedlich. Wenn die Sonne hoch am Himmel steht, so ist der Weg, den das Licht durch die Atmosphäre zurücklegen muss, relativ kurz. Es wird vor allem blaues Licht gestreut - der Himmel wirkt blau. Dieses Phänomen wird auch Rayleigh-Streuung genannt. Der Engländer John William Strutt, 3. Baron Rayleigh, entdeckte das physikalische Prinzip, das den blauen Himmel verursacht, im 19. Jahrhundert.

      Rotes Sonnenlicht verursacht Farbe beim Sonnenuntergang

      Zu Sonnenaufgang oder Sonnenuntergang zeigt der Himmel andere Farben als das Blau am Tage. Variationen von Rottönen lösen das Blau ab und auch die tagsüber gelblich wirkende Sonne erscheint rot. Das liegt daran, dass die Sonnenstrahlen morgens oder abends einen längeren Weg durch die Atmosphäre haben, weil die Sonne tiefer steht: Es wird vor allem rotes Licht gestreut. Denn: Die Moleküle fangen nach einer kurzen Strecke das kurzwellige blaue Licht ab; auf der Erde kommen nur noch die langwelligen roten Strahlen an. Dies wird als Sonnenaufgang oder Sonnenuntergang sichtbar.

      Experiment mit Taschenlampe – Sonne und blauer Himmel

      Schüttet man Milch in ein großes durchsichtiges Glas mit Wasser, so kann man die Lichtstreuung des Himmels nachahmen. Die Fettmoleküle der Milch, in der Rolle der Moleküle in der Atmosphäre, streuen das Licht der Taschenlampe. Das Licht erscheint blau, die Lichtquelle erzeugt einen gelblichen Schein wie die Sonne.

    • Wie kommt es, dass wir den Mond nicht immer gleich wahrnehmen, dass er sich zum Beispiel manchmal als Neumond, manchmal als Vollmond zeigt? Was haben Sonne und Erde damit zu tun? Das Video erklärt die Zusammenhänge.

    • Saugnäpfe kennt jeder - z.B. von der Fußmatte in der Dusche. Ganz klar eine menschliche Erfindung, ein technisches Patent. Oder vielleicht doch nicht?

    • Parabolantennen empfangen Radiowellen aus den Tiefen des Alls. Um herauszufinden, wie das funktioniert, lassen wir Bälle in einen Parabolspiegel fallen.

    • Was ist der genetische Code?

      Über sieben Milliarden Menschen leben heute auf der Erde und jeder einzelne von Ihnen ist ein Unikat. Wie kann das sein? Der „genetische Code“ macht es möglich! In diesem Code sind die Informationen gespeichert, die der Körper braucht, um Proteine - die Grundbausteine des Lebens - zu bilden. Eine virtuelle Reise ins Innere einer Zelle zeigt die wichtigsten Schritte vom genetischen Code zum Protein und verdeutlicht das faszinierende Zusammenspiel von DNA, RNA und Enzymen.

    • Treibhausgase in der Atmosphäre nehmen zu, die Erde wärmt sich immer mehr auf. Woher kommt das?

    • Ein Jetstream ist ein sehr schneller, bandförmiger Westwindstrom, der Windgeschwindigkeiten von bis zu 500 Kilometern pro Stunde erreichen kann. Sowohl auf der Nord- als auch auf der Südhalbkugel gibt es Westwindströme, insgesamt zwei Jetstreams auf jeder Halbkugel. Die Westwindströmungen auf der Nordhalbkugel beeinflussen maßgeblich unser europäisches Wetter. Flugzeuge aus den USA mit dem Ziel Europa nutzen den starken Rückenwind von West nach Ost regelrecht als „Autobahn“. So können die Fluglinien Zeit und Benzin sparen. Doch wie kommt es zu dem Phänomen des „Jetstreams“, auch als „Strahlstrom“ be-kannt?

      Der Jetstream, starke Winde in großer Höhe

      Starke Westwindströmungen treten in großen Höhen von 10 Kilometern in der Troposphäre auf. Sie entstehen dort, wo kalte und warme Luftzellen aufeinander treffen. Der Westwind-strom an der Berührungsstelle von Polar- und Ferrelzelle heißt Polarfrontjetstream, die starken Winde zwischen Ferrel- und Hadleyzelle nennt man Suptropenjetstream. Unser Wetter in Europa wird am stärksten vom Polarfrontjetstream beeinflusst. Dieser Strahlstrom verläuft zwischen dem 40° und 60° Breitengrad und zählt zur Gruppe der „geostrophischen Winde“. Der Polarfrontjetstream bildet sich infolge globaler Ausgleichsbewegungen zwischen Hoch- und Tiefdruckgebieten. Dabei fließt warme Luft vom Äquator Richtung Nordpol, die durch die Erdrotation nach Osten abgelenkt wird.

      Beeinflusst die Windrichtung: die Corioliskraft

      Für die Ablenkung der Winde durch die Erdrotation ist die Corioliskraft verantwortlich. Sie ist nach dem französischen Wissenschaftler Gaspard Gustave de Coriolis benannt, der dieses Phänomen im Jahr 1835 als erster mathematisch untersuchte. Am Äquator dreht sich die Erde mit 1670 Kilometern pro Stunde nach Osten, in Richtung der Pole nimmt die Geschwindigkeit ab. Die Luftmassen, die so vom Äquator zum Nordpol strömen, nehmen den Schwung nach Osten mit und bewegen sich somit schneller als die Erdoberfläche weiter nordwärts. Daher führt die Corioliskraft auf der Nordhalbkugel zu einer Rechtsablenkung der Luftmassen; auf der Südhalbkugel zu einer Linksablenkung. Außerdem gilt: Je näher die Winde an die Pole herankommen, desto stärker ist die Ablenkung. Die Corioliskraft ist somit dafür verantwortlich, dass der Polarfrontjetstream Richtung Osten bläst.

      Verantwortlich für unser Klima in Europa: die Rossby-Wellen des Jetstreams

      In Deutschland kommt der Wind oft aus westlicher Richtung, vom Atlantik her. Er bringt feuchte Luft und sorgt für ein gemäßigtes Klima. Auch das verdanken wir einer Besonderheit des Strahlstroms: Der Jetstream ist kein gleichmäßiges Windband, er mäandert. Dabei entstehen großräumige Wellen in der Atmosphäre - sogenannte Rossby-Wellen -, in denen die Jetstreams sich um die Erde herum bewegen. Je nachdem wie die Wellen verlaufen, bilden sich Hoch- oder Tiefdruckgebiete. Sie wandern mit dem Strahlstrom von Westen nach Osten und beeinflussen unser Wetter in Europa.

    • Können wir Töne unter Wasser hören? Pflanzt sich der Schall dort genauso fort wie in der Luft? Ein Versuch auf dem Meer soll Klarheit bringen. Wir lassen einen Lautsprecher ins Wasser, der einen Ton sendet und ein Mikrofon, das diesen Ton empfangen soll. Der Abstand zwischen beiden beträgt mehr als einen Kilometer. Mal hören, was passiert!

    • Der Wattwurm ist das „heimliche Wappentier“ des Wattenmeeres. Bei einem Experiment im Versuchslabor zeigt er, was er mit dem Wattboden macht und warum er so wichtig für das Ökosystem Wattenmeer ist.

    • In der Strömung von Bächen und Flüssen steckt viel Energie - die ein Flusskraftwerk anzapft. Haushohe Turbinen liefern Strom für hunderttausende Haushalte.

    • Wir wollen wissen, was die Luft aus einem Klassenzimmer wiegt. Wir sammeln die Luft in Plastiktüten ein und versuchen sie zu wiegen. Doch das geht schief. Vielleicht klappt es, wenn wir die Luft komprimieren?

      Schlagworte: Gewicht, Luft, Luftdruck
    • Wasserdruck hat enorme Kräfte. Wir testen die Kraft des Wassers mit einem Motorrad, das dem Druck von 10 000 Meter Tiefe ausgesetzt wird.

    • Unter den Tieren gibt es solche, die allein am Geschmack verschiedene Gräser erkennen und andere, deren Zunge keine feinen Unterschiede erkennt.

    • Die Sonne verwöhnt die Erde mit Licht und Wärme, schickt uns mehr Energie, als wir überhaupt benötigen. Jetzt muss man die Sonnenwärme nur noch einfangen und daraus Strom erzeugen.

    • Ohne unsere Knie geht gar nichts. Denn nur sie ermöglichen uns das Beugen und Strecken der Beine, eine Grundvoraussetzung des Laufens. In der Werkstatt baut der Schreiner ein Holzmodell des Knies. Und entdeckt dabei, dass das wertvolle Gelenk sehr viel mehr ist, als nur die Verbindung von Ober- und Unterschenkel.

    • Die Hüfte ist ständig im Einsatz. Besonders beim Tanzen wird ihr einiges abverlangt. Das Hüftgelenk muss sich drehen, beugen, wenden und darf dabei nicht kaputt gehen. Um zu sehen, wie dieses Wunderwerk genau funktioniert, baut die Schreinerin ein hölzernes Hüftgelenk und zeigt, wie die einzelnen Bestandteile ineinandergreifen.

    • Ein Schmied braucht kräftige Schultern, sonst kann er seine Arbeit nicht verrichten. Um zu verstehen, wie das Schultergelenk arbeitet, wird in der Schmiede ein metallenes Schultergelenk konstruiert. Funktionieren kann das Schultergelenk nur, wenn alle Elemente gut verbunden sind und perfekt ineinandergreifen.

    • Schall braucht ein Medium, um sich auszubreiten. Üblicherweise ist das Luft - aber wie genau funktioniert das eigentlich? Und was passiert im Vakuum? Das erklären die Wissenschafts-Comedians.

    • Kann eine Drehung allein durch Gewichtsverlagerung beeinflusst werden? Wir schicken vier Artisten in die Arena. Wird sich die Drehung eines großen Rads beschleunigen, wenn die Artisten von außen ins Innere des Rades klettern?

    • Wie entstanden die Höhlen der schwäbischen Alb?

      Die Schwäbische Alb gilt als eine der höhlenreichsten Regionen in Europa. Weit über 2000 Höhlen sind bekannt und einige der schönsten sind für Besucher zugänglich. Aber wie entstanden die Höhlen eigentlich?

    • Wenn ein Blitz am Himmel zu sehen ist, sind meist auch Donner und Regen nicht weit - ein Gewitter ist im Anzug. Wie kommt es zu Blitz und Donner? Warum regnet es? Eine Animation zeigt die physikalischen Zusammenhänge.

    • Tropische Wirbelstürme entstehen über den Ozeanen durch die Verdunstung von warmem Meereswasser mithilfe der Corioliskraft. Sie erreichen Windgeschwindigkeiten von bis zu 250 Kilometer pro Stunde und verursachen nicht selten Überschwemmungen und Sturmfluten.

      Tropische Wirbelstürme bilden sich über den Ozeanen

      Ob Hurrikan, Taifun oder Zyklon – eines haben tropische Wirbelstürme trotz ihrer unterschiedlichen Bezeichnung in den verschiedenen Erdteilen gemeinsam: Die Stürme entstehen im Bereich der Tropen über den Ozeanen. Dabei verdunstet Meerwasser, so dass feuchtwarme Luft schnell nach oben steigen kann. Heftige Wirbelstürme können Schäden in Millionenhöhe verursachen und fordern mit ihrer gewaltigen Zerstörungskraft nicht selten viele Todesopfer, vor allem in den tropischen Küstenregionen.

      Tropische Wirbelstürme sind abhängig von Wassertemperatur und Corioliskraft

      Tropische Wirbelstürme können nur unter ganz bestimmten Bedingungen entstehen. Dazu muss die Temperatur der Meeresoberfläche mindestens 27 Grad Celsius betragen und die Corioliskraft mitwirken. Die Corioliskraft wird durch die Drehung der Erde erzeugt und lenkt die Luftmassen ab: auf der Nordhalbkugel nach rechts, also nach Osten, auf der Südhalbkugel nach links, also nach Westen. Treffen diese Faktoren - warmes Meerwasser und Corioliskraft - zusammen, kann daraus bei bestimmten Bedingungen ein Wirbelsturm entstehen. Das funktioniert aber nur innerhalb der tropischen Zone auf beiden Erdhalbkugeln - zwischen dem 5. und dem 20. Breitengrad. Am Äquator selbst sind die Ozeane zwar warm genug, aber die Corioliskraft fehlt. An den Polen ist es umgekehrt: Hier ist die Corioliskraft stark, jedoch das Meerwasser zu kalt.

      Wirbelstürme entstehen durch Verdunstungen an der Meeresoberfläche

      Ein tropischer Wirbelsturm entsteht immer gleich: Zunächst verdunstet Wasser an der Meeresoberfläche, die feuchtwarme Luft steigt auf und kondensiert in der Höhe. Durch die Kondensation entstehen Cumulus-Wolken, die mit ihrer Verdunstungswärme Energie für den Sturm liefern. Die Folge: Die Windgeschwindigkeit nimmt zu, es entstehen Gewitterwolken, die ringförmig angeordnet sind und durch die Corioliskraft zu rotieren beginnen. Diese spiralförmige Form eines Wirbelsturms bezeichnet man auch als Augenwall (eyewall) – hier treten die höchsten Windgeschwindigkeiten und die stärksten Niederschläge auf. Die sich drehenden Luftmassen können bis zu 250 Kilometer pro Stunde erreichen. Im Zentrum des Sturms, im sogenannten Auge (eye), ist es dagegen nahezu windstill. Hier herrscht ein Unterdruck, durch den feuchtwarme Meeresluft nachgesaugt wird. Diese steigt spiralförmig in den Eyewall und liefert weitere Energie für Wirbelsturm.

      Folgen tropischer Wirbelstürme

      Tropische Wirbelstürme entfalten bei zunehmender Stärke zerstörerische Kräfte. Auf See sorgen sie für hohen Seegang und gefährden die Schifffahrt. An Land zerstören Hurrikane, Taifune und Co. mit ihren enormen Windgeschwindigkeiten Gebäude, Straßen, Häfen. Hinzu kommen oft Schäden durch Starkregen, Überschwemmungen und Sturmfluten an den Küsten. Zum Glück besteht heutzutage mithilfe von Wettersatelliten und modernster Technik die Möglichkeit, tropische Wirbelstürme und ihren Zugweg genau zu bestimmen und die Bevölkerung rechtzeitig zu warnen.

    • Zum Verbrennen ist Erdöl eigentlich viel zu schade. Die Vorräte sind begrenzt und entstehen über lange Zeiträume - unser heutiges Erdöl stammt noch aus Zeiten der Dinosaurier.

    • Wie entstehen Regen und Hagel und welche verschiedenen Arten von Regen gibt es bei uns in Mitteleuropa?

    • Mit Hilfe eines mit Luft gefüllten Ballons kann man nachvollziehen, wie Wind entsteht. Öffnet man den Verschluss des Ballons, strömt die Luft nach außen und kann ein Windrad in Bewegung setzen. Aber was geschieht da genau?

    • Ein Kind im Mutterleib ist eingeschlossen in einer Wasserblase. Wie kommt es dort an Sauerstoff und Nahrung? Die Natur hat für ein ausgeklügeltes Versorgungssystem gesorgt.

    • Welchen Gesetzen folgen fallende Kugeln? Unser Team beobachtet das Verhalten verschiedener Kugeln und beschließt, mit den gewonnenen Erkenntnissen einen Großversuch zu starten.

    • Erdöl - ein wichtiger Rohstoff und Energieträger. Immer neue Bohrungen sind nötig, damit der Nachschub nicht abreißt. Aber zuerst muss ein Ölkonzern wissen, wo es sich zu bohren lohnt.

    • Wir planen einen ganz großen Wurf. Von einem fahrenden Lastwagen aus, schleudern wir mit einer Wurfmaschine einen Ball senkrecht und sehr hoch in die Luft. Wird der Ball wieder auf den fahrenden Lastwagen zurückfallen?

    • Zwei Parabolspiegel stehen sich gegenüber. Die Verbindung zwischen den Spiegeln folgt festen Gesetzen. Wie funktioniert die Übertragung von Licht- und Schallwellen?

    • Süß oder salzig? Lecker oder nicht? Die Zunge ist unser "Vorkoster" und prüft, ob Speisen genießbar sind.

    • Computertomographen ermöglichen Ärzten dreidimensionale Blicke ins Innere des Körpers. Dahinter stecken ausgeklügelte Röntgentechnik und clevere Computerprogramme.

    • Die Wärme aus der Erde könnte eine Alternative zu fossilen Rohstoffen sein, denn diese werden knapper und teurer und verschärfen durch die Abgase den Treibhauseffekt. Geothermiekraftwerke nutzen heißes Wasser aus tief gelegenen Gesteinsschichten und erzeugen damit elektrischen Strom. Sie arbeiten nach dem Prinzip der Kraft-Wärme-Kopplung, d.h. sie produzieren Strom und heizen auch per Fernwärme. Wie das genau geht, zeigt der Film mithilfe einer Animation.

    • Früher musste Weizen mühsam in Handarbeit geschnitten, gedroschen und die Spreu vom Weizen getrennt werden. Heute übernimmt all das eine einzige Maschine - der Mähdrescher.

    • Immer mehr Autos haben Navigationsgeräte, die dem Fahrer helfen, sich zu recht zu finden. Aber wie kann das Navi wissen, wo sich ein Fahrzeug befindet? Worauf stützen sich die „Anweisungen“, die es gibt?

    • Ein Sonnenkollektor wandelt Sonnenstrahlung in Wärmeenergie um. Sonnenkollektoren sind oft auf den Dächern von Privathaushalten installiert. Mit ihrer Hilfe kann man Wasser er-wärmen oder Heizenergie gewinnen. Solarenergie zählt zu den erneuerbaren Energien und leistet damit einen wichtigen Beitrag für Ökologie und Umwelt.

      Sammelt Sonnenlicht – der Sonnenkollektor

      Doch wie funktioniert ein Sonnenkollektor? Treffen Lichtstrahlen auf einen Körper, dringen sie in diesen entweder ein oder werden reflektiert. Dabei gilt Folgendes: Ein heller Körper reflektiert viel und schluckt wenig Sonnenlicht; ein dunkler Körper reflektiert wenig, absor-biert aber mehr Sonnenstrahlen. Dieses Prinzip macht sich der Sonnenkollektor bei der Wärmegewinnung zu Nutze.

      Wärmeenergie durch Absorber

      Für die private Energiegewinnung werden vor allem Flachkollektoren verwendet. Diese Son-nenkollektoren bestehen aus zwei Schichten: Eine Glasscheibe oben und unten ein Absorber mit einer schwarzen Metallschicht. Darunter fließt Wasser als Wärmeträger. Treffen die Sonnenstrahlen durch die Glasscheibe auf die untere schwarze Schicht, wird beinahe der gesamte Spektralbereich des Lichtes geschluckt. Dabei erwärmen sich der Absorber und das darunter fließende Wasser. Der Absorber ist der wichtigste Bestandteil des Sonnenkollektors.

      Heißes Wasser und Wärme dank Sonnenenergie

      Das hört sich einfach an, hat jedoch einen Haken. Das schwarze Material schluckt viel Strah-lung, strahlt dabei aber auch wieder viel Wärme ab. Um diesen Energieverlust zu reduzieren, besitzt der Solarabsorber eine raffinierte Deckschicht aus besonderem Material. Damit ist der Sonnenkollektor allseitig wärmegedämmt und strahlt nur noch 5 Prozent der Energie wieder ab. Das Ergebnis: Das darunter fließende Wasser erreicht eine Temperatur von 60 bis 80 Grad! In gut gedämmten Leitungen fließt das warme Wasser in einen mit Schaumstoff isolierten Wassertank. Bei Bedarf kann das Brauchwasser aus diesem Wärmespeicher - zumindest in den Sommermonaten – jederzeit für eine warme Dusche genutzt werden.

      Der Umwelt zuliebe: Solarthermie

      Das Prinzip der Solarthermie ist bereits seit der Antike bekannt. Schon der Grieche Archime-des von Syrakus erkannte die Bedeutung von Brenn- und Hohlspiegeln. Der Legende nach soll er mit einem Solar-Spiegel die Flottenverbände der Römer in Brand gesetzt haben – oder zumindest die olympische Fackel. Erst im 18. Jahrhundert erfand der Schweizer Horace-Bénédict de Saussure den Vorläufer heutiger Solarkollektoren. Doch erst mit der Ölkrise in den 70er Jahren des letzten Jahrhunderts begannen Politiker die Solarenergie als ernstzu-nehmende Alternative für herkömmliche Energien zu fördern.

    • Die Geburtsstunde der modernen Astronomie schlägt im 17. Jahrhundert mit der Erfindung des Teleskops: Ein gebogener Spiegel holt ferne Sterne ganz nah heran.

    • Wie auf der Straße, so muss auch auf dem Meer der Verkehr geregelt werden, damit es keine Unfälle gibt. Dazu wird Radar eingesetzt. Aber wie sieht so ein Radargerät aus und was „macht“ es genau?

    • In unserer immer mobiler werdenden Gesellschaft ist Erdöl ein wertvoller Rohstoff, denn aus Erdöl können wir Kraftstoffe für Autos gewinnen. Aber wie lassen sich Benzin und Diesel aus Rohöl - einem Stoffgemisch aus über 500 Komponenten - überhaupt isolieren?

    • Eine Schatzkiste liegt am Grund eines Schwimmbeckens. Unsere Leute wollen sie bergen. Als Hilfsmittel haben sie nur ein mit Luft gefülltes Kissen zur Verfügung. Kann die Auftriebskraft ihnen vielleicht helfen?

      Schlagworte: Auftrieb, Kraft, Luft, Wasser
    • Grillen und Heuschrecken zirpen. Sie verständigen sich also mit Schall, dabei haben sie gar keine Ohren am Kopf. Was ist ihr Geheimnis?

    • Wir wollen wissen: Verändern sich Töne, wenn sie beschleunigt werden – wenn die Tonquelle also zum Beispiel in einem Flugzeug mitfliegt? Oder ist das eine Frage des Standorts? Unser Team gibt alles, um diese bewegende Frage zu beantworten.

    • Die Erde besteht aus verschiedenen Schichten: aus Erdkruste, Erdmantel, äußerem und innerem Erdkern. Wie dick diese Erdschichten sind, woraus sie bestehen und welche Temperaturen in diesen Schichten herrschen, zeigt eine Animation.

    • Weinbergschnecken brauchen Kalk

      Die Weinbergerschnecke ist die größte einheimische Landschnecke. Sie gehört zur Familie der Schnirkelschnecken und heißt auf Lateinisch Helix promatia. Ihr Markenzeichen ist ein fein straffiertes Schneckenhaus, das bis zu 5 cm groß werden kann. Weinbergschnecken haben es gerne warm; sie leben vorwiegend in Gärten, Hecken oder in lichten Wäldern. Dabei bevorzugen sie Untergründe aus Kalkgestein. Denn Kalk ist lebenswichtig für die Weinbergschnecke: Kalk ist der Baustoff ihres Gehäuses; sie löst ihn direkt mithilfe ihres Schleims aus dem Gestein oder nimmt ihn über die Nahrung auf. Weinbergschnecken vertilgen großen Mengen an Grün, ihre Leibspeise sind jedoch welke Pflanzenteile. Daher richten sie in Gärten kaum Schaden an.

      Tricks zum Überwintern

      Die wärmeliebenden Weinbergschnecken sind besonders im Frühling und Sommer aktiv. Bei bewölktem Himmel und nach ausgiebigen Regenfällen sind sie in ihrem Element. Doch im Herbst, wenn die Tage kürzer werden, treffen die großen Landschnecken Vorkehrungen für den Winter. An einer windgeschützten Stelle gräbt die Weinbergschnecke ein Loch und buddelt sich ein. Dann bereitet die Schnecke sich selbst vor: Sie sondert aus den Drüsen ihres Mantels ein kalkhaltiges Sekret ab. Mit diesem Sekret bildet sie einen luftdurchlässigen Kalkdeckel, mit dem sie ihr Gehäuse von innen verschließt. Allerdings reicht der Kalkdeckel nicht allein, um den frostigen Temperaturen zu trotzen. Die Weinbergschnecke fährt im Winter alle Körperfunktionen und ihren Sauerstoffverbrauch runter. Im Frühling lockt junges Grün-zeug, die Schnecke bricht den Kalkdeckel auf und beginnt ihr neues Lebensjahr. In freier Wildbahn können die größten einheimischen Landschnecken bis zu 20 Jahre alt werden.

      Ein geschütztes Tier

      Die Weinbergschnecke zählt zu den geschützten Tierarten in Deutschland. Warum das so ist, verrät ein Blick auf die Speisekarte exquisiter Restaurants. Weinbergschnecken gelten als Delikatesse. Das Sammeln der großen Landschnecken in der Natur hat dazu geführt, dass die helix promatia fast ausgestorben wäre. Heute steht die Weinbergschnecke unter Naturschutz und darf nur noch von Zuchtbetrieben an die Gastronomie verkauft werden.

      Schlagworte: Schnecken, Schneckenhaus
    • Elektrostatische Ladung und Toner sind entscheidend, damit ein Kopierer kopieren kann. Ob wir elektrostatische Ladung selbst erzeugen und damit ein Poster drucken können?

    • Sie sind wahre Haftkünstler und gehen glatte Wände hoch - Geckos. Ihr Geheimnis liegt in den Zehen und ist nur mit dem Mikroskop sichtbar.

    • Grenzen der konventionellen Landwirtschaft

      Für die konventionelle Landwirtschaft ist die intensive Nutzung der Böden durch Monokulturen und den Einsatz von Chemie problematisch. Dort, wo moderne Landwirtschaft auf hohe Erträge setzt, sind die Äcker oft ausgelaugt und vertrocknet, das Gleichgewicht der Böden ist zerstört. Die Folge: Die Landwirte setzen immer mehr Pflanzenschutzmittel und Dünger ein, damit die Erträge einigermaßen stabil bleiben. Dadurch verliert der für die Böden so wichtige Humus mit zahlreichen Mikroorganismen und Kleinstlebewesen kontinuierlich an Nährstoffen. Kommen zu den vorhandenen Problemen noch klimatische Schwankungen, beispielsweise lange Trockenperioden, dörren die Böden weiter aus, sind anfälliger für Schädlinge und weniger fruchtbar. Ein Teufelskreis.

      Naturverträglich: Komposttee

      Einige Landwirte machen sich Gedanken, wie man diesen Kreislauf durchbrechen und naturverträglicher wirtschaften kann. Landwirt Michael Reber aus Baden-Württemberg setzt zum Beispiel auf Komposttee. Auch seine Ackerböden sind durch den jahrelangen Einsatz von Pestiziden und synthetischen Düngemitteln ausgedorrt. Der Komposttee ist ein natürlicher Dünger, eine spezielle Mixtur aus Wasser, Kompost und anderen organischen Stoffen. In der Flüssigkeit vermehren sich wichtige Mikroorganismen, die die Pflanzen nicht nur schützen, sondern auch bei ihrer Aufnahme von Nährstoffen unterstützen. Bringt man den Komposttee auf den Äckern aus, regeneriert sich der Boden, Kleinstlebewesen siedeln sich wieder an. Tausendfüßler, Milben, Regenwürmer und anderes Getier sorgen - genauso wie Bakterien, Pilze und Mikroorganismen - dafür, dass der Boden gesund bleibt. Denn in einem humusreichen Boden, können Pflanzen viel besser mit Wasser und Nährstoffen versorgt werden.

      Günstig und self-made

      Der Komposttee hat auch noch weitere Vorteile: Landwirte wie Michael Reber können den biologischen Dünger selbst herstellen und in der Folge den Bodenlebewesen die Arbeit überlassen. Werden diese regelmäßig mit wertvollem Komposttee auf den Anbauflächen gefüttert, sorgen sie von allein dafür, dass der Boden gestärkt wird. Außerdem ist der Komposttee nicht nur eine natürliche, sondern auch eine preiswerte Lösung im Vergleich zu teuren Pflanzenschutzmitteln und Kunstdüngern.

    • Der Rhein entspringt bekanntlich in den Alpen, fließt in den Bodensee, durch diesen hindurch und auf der anderen Seite, bei Stein am Rhein, wieder heraus. Aber wie lange braucht das Rheinwasser von der Quelle bis zur vollbrachten Seedurchquerung?

      Ein Versuch mit einer Plastikente: Sie wird an der Rheinquelle in den Alpen zu Wasser gelas-sen und auf die Reise geschickt. Verfolgt man die Ente, so müsste man die Zeit stoppen kön-nen, die das Rheinwasser braucht: von der Quelle bis zur Mündung in den Bodensee und durch diesen hindurch bis nach Stein am Rhein, wo der Rhein seinen Weg in Richtung Nor-den fortsetzt. Dafür müsste die Plastikente allerdings einmal durch den ganzen Bodensee schwimmen. Doch wird sie überhaupt in Stein am Rhein ankommen?

      Rheinbrech: Treffpunkt von Alpenrhein und Bodensee

      Die Quelle des Rheins liegt in den Alpen, im Gotthard-Massiv. Dort entspringen Vorder- und Hinterrhein. Der auf zweieinhalbtausend Meter liegende Toma-See gilt offiziell als Rhein-quelle. Das Wasser fließt viele Kilometer durch die Schweiz, bevor es als Alpenrhein bei Hard in den Bodensee fließt. Diese Stelle, an der Alpenrhein und Bodensee aufeinandertreffen, heißt Rheinbrech.

      Das Wasser des Bodensees ist wärmer als das Rheinwasser

      Doch zurück zum Versuch: Am Rheinbrech strauchelt die Plastikente schon, kurz bevor sie überhaupt den Bodensee erreicht hat. Da es nicht weiter geht, wird die Ente aus dem Was-ser genommen und erst hinter dem See wieder in den Rhein hineingesetzt. Doch welchen Rückschluss lässt das Enten-Experiment auf den Weg des Rheinwassers im Bodensee zu? Strömungsforscher Ulrich Lang erklärt, was dort passiert: Das grautrübe Wasser des Alpen-rheins mischt sich nicht sofort mit dem bläulichen Wasser des Bodensees; es setzt sich ab - deutlich sichtbar anhand einer farblichen Trennlinie. Der Grund dafür ist die unterschiedliche Temperatur. Das Wasser des Alpenrheins ist kälter als das des Bodensees. Außerdem enthält das bräunliche Flusswasser gelöste Schwebeteilchen. Beide zusammen, die niedrige Temperatur und die Sedimentfracht, machen das Wasser des Alpenrheins schwerer als das Oberflächenwasser des Sees.

      Das Rheinwasser fließt nicht durch den Bodensee hindurch

      Die Ente kommt genauso wenig voran wie das Rheinwasser. Der Grund: Das kalte Alpen-rheinwasser füllt den Bodensee nur, die Wassermassen wabern im See und fließen nicht durch diesen hindurch. Daher gibt es praktisch kaum Strömung, erklärt Strömungsforscher Lang. Wie schnell sich das Rheinwasser nach dem Rheinbrech im See weiter bewegt, hängt daher von anderen Faktoren ab: Zum Beispiel vom Wind. Im besten Fall würde die Plastiken-te bei starken Herbstwinden in Richtung Westen rund 21 Tage für die Überquerung des Bo-densees benötigen. Im schlechtesten Fall – wenn der Wind abflaut – könnte sie jahrelang auf dem Bodensee herumirren. Ob die Ente dann jemals die Ausmündung bei Stein am Rhein erreichen würde, bleibt offen. Mit der Plastikente ist die Frage, wie lange der Alpenrhein durch den Bodensee fließt, jedenfalls nicht zu lösen.

    • Einen Lichtstrahl wollen wir durch ein Gebäude über mehrere Stockwerke lenken, 350 Meter weit! Die einzigen Hilfsmittel: Laserlicht und Spiegel. Ob das gelingt?

    • Welche Möglichkeiten gibt es eigentlich, die Strömungsgeschwindigkeit in einem Fluss zu messen? Unser Team testet verschiedene Methoden und erläutert, wann welche Methode am besten eingesetzt wird.

    • Flaggenschwenker reihen sich auf einer langen Straße auf. Ein Signal ertönt. Jeder hebt seine Flagge genau dann, wenn er dieses Signal hört. Ob sich der Weg des Schalls so verfolgen und die Schallgeschwindigkeit messen lässt?

    • Ein Riesenpendel schwingt durch eine Sporthalle. Eine Bahngeschwindigkeit von 100 Kilometer pro Stunde ist unser Ziel.

    • Katzen sehen im Dunkeln sehr viel besser als Menschen. Das liegt an einer reflektierenden Schicht im Katzenauge, dem sogenannten „Tapetum Lucidum“. Diese Schicht wirkt wie ein Lichtverstärker und ist der Grund, warum dafür, dass Katzenaugen im Dunkeln aufleuchten.

      In der Dämmerung sehen Katzen mehr als Menschen

      Menschen sehen in der Nacht viel weniger als Katzen. Sie sind auf elektrisches Licht oder Reflektoren an Leitpfosten entlang der Straßen angewiesen. Diese „Katzenaugen“ tragen ihren Namen nicht umsonst: Denn die Augen der Katzen können – im Gegensatz zu den menschlichen Augen – Licht reflektieren und deshalb in der Dunkelheit viel besser sehen. Hinzu kommt, dass Katzen ein größeres Gesichtsfeld als Menschen haben. Die nachtaktiven Tiere nehmen an der Peripherie ihres Gesichtsfeldes mehr wahr, als Menschen dies tun.

      Die Rezeptoren: Zapfen und Stäbchen

      Was passiert, wenn Licht ins Auge fällt? Sowohl bei der Katze als auch beim Menschen trifft das Licht auf die Netzhaut. Diese besteht wiederum aus Millionen winziger Rezeptoren. Es gibt zwei Arten von Rezeptoren: Die Zapfen sind für die Farben zuständig, die lichtempfindli-cheren Stäbchen für die Hell-Dunkel-Wahrnehmung. Wichtige Unterschiede zwischen Katze und Mensch dabei sind: Katzen haben eine deutlich höhere Anzahl von lichtempfindlichen Stäbchen und eine andere Farbwahrnehmung als wir. Bisher gehen Wissenschaftler davon aus, dass Katzen die Welt eher blau-violett und grün-gelb sehen.

      Das „Tapetum Lucidum“

      Der entscheidende Unterschied aber, warum Katzen in der Dämmerung besser sehen als Menschen, ist eine reflektierende Schicht hinter der Netzhaut. Diese Schicht, Fachleute nen-nen sie „Tapetum Lucidum“, wirkt wie ein Lichtverstärker. Fällt das Licht ins Katzenauge, so wird es wie von einem Spiegel noch einmal auf die Rezeptoren zurückgeworfen. Das hilft den Vierbeinern aus wenig Licht sehr viel mehr zu machen. Leuchten Katzenaugen im Dunk-len auf, ist der Grund das „Tapetum Lucidum“. Die schlitzförmig, senkrecht stehenden Pupil-len der Katze ermöglichen darüber hinaus, dass der Vierbeiner einfallendes Licht, auch bei schlechter Beleuchtung, maximal nutzen kann.

    • Eine Stubenfliege zu fangen ist beinahe ein Ding der Unmöglichkeit. Das liegt an ihren Facettenaugen und ihrem flinken Gehirn. Im Gegensatz zum Menschen sieht sie um ein Vielfaches schneller und kann deshalb Gefahren rechtzeitig erkennen.

      Die Facettenaugen der Stubenfliege bewahren sie vor Gefahren

      Jeder kennt die Situation: Eine Stubenfliege schwirrt hartnäckig umher, es ist aber beinahe unmöglich sie mit der Hand zu fangen. Die Fliege ist einfach schneller – und das, obwohl sie im Durchschnitt nur sieben Millimeter groß ist und 20 Tage lang lebt. Von weitem betrachtet, scheint die Stubenfliege, genau wie der Mensch, nur zwei Augen zu haben. Tatsächlich hat sie zwei Facettenaugen, die aber jeweils aus tausenden sechseckigen Einzelaugen bestehen. Jedes Einzelauge hat Sinneszellen, die das Licht aus unterschiedlichen Blickwinkeln verarbeiten. Die Stubenfliege hat sozusagen einen eingebauten Rundumblick, während der Mensch ein begrenztes Gesichtsfeld hat.

      Das Gehirn der Stubenfliege sorgt für eine schnelle Wahrnehmung

      Doch das ist nicht der einzige Grund, warum die Stubenfliege reaktionsschneller ist als der Mensch. Aus Sicht der Fliege bewegen sich die Menschen vier Mal so langsam wie sie selbst und das liegt am flinken Gehirn der Stubenfliege. Die Wege im Fliegengehirn sind kurz, weshalb die kleinen Brummer Gefahren sehr viel schneller wahrnehmen als andere Lebewesen. Wie genau die Stubenfliege sieht, ist allerdings unklar. Sieht sie die Welt als zusammenhängendes Mosaik oder in tausend Einzelbildern? Das ist für die Wissenschaft noch zu erforschen.

      Fernsehen ist für Stubenfliegen wie Zeitlupe

      Bekannt ist jedoch, dass die Stubenfliege ein Vielfaches mehr an Bildern pro Sekunde sieht als der Mensch. Die Fliege kann etwa 200 einzelne Bilder pro Sekunde erkennen; der Mensch dagegen nur rund 18 Bilder. Das macht sich vor allem das Fernsehen zunutze: Ein Film besteht in der Regel aus 25 einzelnen Bildern pro Sekunde, die der Mensch als fließende Bewegungen wahrnimmt. Das Gehirn baut einzelne Bilder, die vom Auge an das Gehirn gesendet werden, zu einer fließenden Abfolge zusammen. Bei der Fliege geht das sehr viel schneller als beim Menschen. Deshalb sieht die Stubenfliege Fernsehen wie in Zeitlupe oder wie ein viel zu langsam ablaufendes Daumenkino.

    • Mit ihren feinen Nasen sind Spürhunde nützliche Verbündete des Menschen im Kampf gegen den Drogenschmuggel.

    • 600 Kugeln, dicht an dicht aufgereiht. Einmal darf der Billardspieler stoßen. Wird es ihm gelingen, seine Stoßenergie bis zur letzten Kugel weiter zu geben?

    • Manche Objekte oder Lebewesen sind so klein, dass selbst eine Lupe nicht mehr ausreicht, um winzigste Details zu erkennen. Da hilft nur ein Mikroskop! Kriminalbiologe Mark Benecke nutzt es zum Beispiel für die Bestimmung von Fliegenlarven. Aber wie genau funktioniert ein Mikroskop?

    • Eine Lupe ist eine geniale Erfindung. Im Alltag ist sie hilfreich, um Kleingedrucktes zu entziffern. Für Kriminalbiologen wie Mark Benecke ist sie außerdem ein wichtiges Werkzeug am Tatort. Aber wie funktioniert eine Lupe?

    • Im Sonnenlicht wirft ein Turm einen Schatten. Einen Tag lang bleiben wir ihm auf den Fersen und dokumentieren, wie er wandert.

    • Ist etwas schmutzig geworden, bekommt man es mit Seife oder Waschpulver schnell wieder sauber. Aber mit welchem Trick schaffen es die waschaktiven Substanzen, ein eben noch verschwitztes und verschmutztes T-Shirt im Handumdrehen in ein blitzsauberes und wohlriechendes Kleidungsstück zu verwandeln?

    • Wir wollen einen Elefanten wiegen, indem wir ihn auf ein Floß bugsieren: Mit dem Dickhäuter verändert sich der Tiefgang des Floßes. Ob sich so sein Gewicht feststellen lässt?

      Schlagworte: Waage, Wasserstand, Wiegen
    • Ein Hochzeitskleid wird gemacht. Das Material des Kleides: Salz. Damit das kristalline Kleid entstehen kann, müssen Salzgehalt, Temperatur und Experimentdauer exakt aufeinander abgestimmt werden.

    • Wasserkraft ist eine der ältesten Energiequellen - und dank Klimawandel und Kernkraft-Ausstieg wieder modern. Stauseen können Energie speichern und auf Knopfdruck Strom liefern.

    • Laser sind inzwischen alltägliche Geräte geworden. Aber wie genau entsteht in diesen Geräten eigentlich der Laserstrahl? Wir zeigen das physikalische Prinzip und die technische Umsetzung.

      Schlagworte: Elektronen, Laser, Licht
    • Um herauszufinden, wieso Windeln große Mengen Flüssigkeit aufnehmen können und trotzdem trocken bleiben, basteln wir eine Riesenwindel. Wir lassen vier Probanden an den Start gehen. Sie sollen pinkeln, was die Windel hält…

    • In der Antike galt die Erde als Mittelpunkt des Universums. Dieses Weltbild hielt sich über hunderte von Jahren, bis es im Zeitalter der Renaissance durch die Berechnungen genialer Mathematiker ins Wanken kam. Einer von ihnen war Johannes Kepler. Was genau hat er herausgefunden?

    • In unserem Experiment schießen wir einen Ball rückwärts aus einem fahrenden Auto. Ball und Auto haben entgegengesetzt gleiche Geschwindigkeit. Heben sich die Geschwindigkeiten gegenseitig auf? Verharrt der Ball in der Luft? Die Hochgeschwindigkeitskamera wird es zeigen…

  • NwT

    • Wir schicken einen Rennwagen mit Elektromotor an den Start - betrieben mit Batterien aus Zitronensaft und Kupfer- oder Magnesium-Elektroden. Eine Strecke von 200 Metern soll er bewältigen. Ob das zu schaffen ist?

    • Eine Batterie lässt sich aus Kohle, Metall, Papier, Flüssigkeit und Draht basteln. Unser Team belädt einen Anhänger mit solchen Batterien, um damit eine richtige Lokomotive anzutreiben. Die Lok ist zwar klein aber richtig schwer. Kann sie mit diesem Antrieb auf große Fahrt gehen?

    • Ein schwerer japanischer Sumoringer wird an einem mit Deckel versehenen Glas in die Höhe gezogen. Die Kraft des Luftdrucks entscheidet, ob der Ringer schwebt oder abstürzt.

    • An den Seiten eines Buches ziehen wir einen Sumoringer in die Höhe. Die Reibungskräfte der ineinander verschränkten Buchseiten sollen ihn in der Luft halten. Wird er schweben oder zu Boden stürzen?

    • Pumpen wir mit einer Luftpumpe Luft in einen Ball, entsteht ein hoher Druck in der Pumpe, denn die Luft wird beim Pumpen komprimiert. Diese Druckluft wollen wir nutzen, um ein Auto zum Fahren zu bringen.

      Schlagworte: Luft, Luftdruck, Pumpe
    • Wenn sich ein gedehntes Gummiband wieder zusammen zieht, übt es Kraft aus - Spannkraft. Mit der Spannkraft gebündelter Gummibänder wollen wir einen Propeller starten: Als Erstes gilt es, Tausende von Gummibändern zusammenzuknüpfen…

    • Kamele besitzen große, flache Sohlen, die das Körpergewicht hervorragend verteilen. Unser Eiertest soll zeigen, wie gut diese Gewichtsverteilung tatsächlich ist: Ein Kamel wird auf 500 Eier gestellt.

    • Wer etwas Schweres anheben möchte, braucht starke Muskeln – oder einen Flaschenzug. Was aber, wenn ein Klavier zu stemmen ist und nur ein einzelner Mann am Zugseil steht? Wird er es schaffen, das Klavier hochzuziehen, nur mit Hilfe mehrerer Flaschenzüge?

      Schlagworte: Gewicht, Kraft, Seil, Ziehen
    • Der Schal einer Dame klemmt fest unter dem Rad eines Lastwagens. Kann ein einzelner Mann, nur mit Hilfe eines Hebels, einen so gewichtigen Wagen anheben?

    • Was passiert eigentlich, wenn ein 139 Meter hoher Stahlturm von der Sonne erwärmt wird? Mit Thermometern messen wir, wie sich die Temperatur am Turm im Laufe eines Tages verändert. Außerdem benutzen wir ein spezielles Messgerät, um jeweils die genaue Höhe des Turms zu ermitteln.

    • Wir untersuchen eine Flüssigkeit mit erstaunlichen Eigenschaften. Wird sie unter Druck gesetzt, fließt sie nicht davon, sondern verfestigt sich, wird dann aber gleich wieder flüssig. Wir lassen mehrere Sportler ein Becken durchqueren, das mit dieser Flüssigkeit gefüllt ist. Läufer, Weitspringer und Turner müssen heftigen starken Druck ausüben; nur dann kann das Flüssige fest werden.

    • Unterschiedliche Magnetpole ziehen sich an, gleiche Pole stoßen sich ab. Diese Abstoßungskraft werden wir nutzen: Wir wollen eine mit Magneten bestückte Platte über einer zweiten, ebenso bestückten, Platte schweben lassen – wie einen fliegenden Teppich.

    • Eine Glühbirne soll mit Hilfe des Erdmagnetfeldes zum Leuchten gebracht werden. Dazu schwingen unsere Leute Drahtseile entlang der Magnetbahnen. Können wir Kräfte der magnetischen Pole der Erde so nutzen, dass unsere Glühbirne angeht?

    • Wir erhitzen Wasser in einem verschlossenen Rohr: Großer Druck entsteht. Wenn wir das Rohr öffnen, wird das Wasser zu Dampf und dehnt sich explosionsartig aus. Ob wir mit Hilfe einer solchen Dampfexplosion einen Ball aus dem Rohr herausschießen können?

    • Professionelle Sänger und Sportler versuchen mit bloßer Stimmgewalt ein Glas zerspringen zu lassen. Ob sie das schaffen?

      Schlagworte: Glas, Klang, Stimme, Ton, Tongenerator
    • Wir wollen mit einer schönen Unbekannten telefonieren. Die Ausrüstung: zwei Becher und eine sehr lange Schnur. Die Verbindung kommt nur zustande, wenn Becher und Schnur die Stimmen übertragen können. Und bis es soweit ist, geht so einiges schief.

    • Ein Windrad dreht sich, wenn sich ein Wärme abstrahlendes Objekt darunter befindet. Die erwärmte Luft steigt nach oben, Aufwind entsteht und setzt das Windrad in Bewegung. Ob wohl auch Körperwärme Aufwind erzeugen kann?

      Schlagworte: Auftrieb, Luft, Wind, Wärme
    • Gebündeltes Licht, das sehr energiereich ist - das ist ein Laserstrahl. Wie vielseitig Laser eingesetzt werden können, zeigt dieser Film.

    • Ein Lied zum Anfassen und immer wieder neu Abspielen ist das Ziel dieses Experiments. Dazu gießen wir die Vibration der Töne in eine Form. Es entsteht eine Welle. Mit einem Wagen, einer selbstgebauten Lautsprecherbox und einer kleinen Nadel wollen wir dieser Welle wieder die ursprünglichen Töne entlocken.

    • Auf einer großen Wand wollen wir einen Regenbogen erzeugen - mit Hilfe der Sonne und mit Glasperlen statt Regentropfen. Wenn das gelingt, sollen unsere Leute über diesen Regenbogen spazieren - ein ehrgeiziges Vorhaben!

      Schlagworte: Licht, Regen, Sonne, Wetter
    • Über einen langen Schlauch sollen zweitausend Liter Wasser von einem Wassertank in einen anderen gelangen und dabei eine Höhe von zehn Metern überwinden. Ob das gelingt?

    • Mit hohem Wasserdruck und einem scharfen Wasserstrahl rücken wir einem Apfel auf die Pelle. Mal sehen, ob er sich zerschneiden lässt.

    • Aus kreisförmig angeordneten Spiegeln bauen wir einen Solarkocher. Die Spiegel bündeln die Sonnenstrahlen auf den Boden einer Pfanne. Ob sich darin ein Steak braten lässt?

    • Ein Team von Radprofis will genügend Strom erzeugen, um ein Karussell in Schwung zu bringen. Ob das mit reiner Muskelkraft gelingt?

    • Wir wollen ein 100 Kilogramm schweres Gefährt in Gang bringen, mit einem Antrieb aus Ballonluft. Dazu benötigen wir sehr viele Ballons und ein ideales Verhältnis von Antriebsluft und Gewicht.

    • Ein langes, schweres Stahlrohr soll zum Wippen gebracht werden. Die erlaubten Hilfsmittel sind ein paar Gasbrenner und mehrere Kugeln, die in das Rohr gefüllt werden. Wir erhitzen eine Seite und lassen die andere abkühlen. Wie verhalten sich dabei die Kugeln und kann dieses Verfahren das schwere Stahlrohr in Bewegung setzen?

    • Viele Menschen wackeln nervös mit dem Knie. Wir wollen die Energie dieser Bewegung nutzen, um 10 000 Leuchtdioden zu betreiben. Ein kleines Plättchen, das wir an den Knien unserer Testpersonen befestigen, soll uns dabei helfen.

    • Einen Elektromagneten selbst zu bauen, ist kein Problem. Aber kann so ein Magnet auch das Gewicht eines erwachsenen Mannes halten?

    • Alles ist fein gerichtet, der Tisch ist gedeckt. Und jetzt: ziehen wir mit einem Ruck die Tischdecke weg. Wie verhindern wir einen Scherbenhaufen?

    • In der Evolution des Menschen gab es vor langer Zeit eine entscheidende Entwicklung - den Schritt zum aufrechten Gang. Welcher unserer Vorfahren hat ihn vollzogen? Und wann?

    • Wir verfolgen den Weg des Lichts vom betrachteten Objekt zur Netzhaut. Dabei wird klar: Vom Augapfel hängt es ab, ob jemand kurz- oder weitsichtig ist.

    • Ebbe und Flut sind regelmäßig wiederkehrende Wasserbewegungen der Ozeane. Die Ebbe bezeichnet den Zeitraum, in dem das Wasser sinkt, die Flut die Spanne, in der das Wasser steigt. Dies geschieht im Rhythmus von 12 Stunden und 25 Minuten. Dabei senken und heben sich die Ozeane um bis zu 20 Meter. In Deutschland kann man das Phänomen der Gezeiten besonders an den Küsten beobachten: An der Nordsee gibt es innerhalb eines Tages zweimal Hoch- und zweimal Niedrigwasser. Den in Metern gemessenen Unterschied zwischen Hoch- und Niedrigwasser bezeichnet man als Tidenhub.

      Der Mond verursacht Ebbe und Flut

      Der Mond bestimmt mit seiner anziehenden Wirkung auf die Erde die Gezeiten. Dabei wirkt der Mond wie ein Magnet und zieht das Wasser von der Erde weg. Auf der mondzugewandten Seite der Erde entsteht dadurch ein Flutberg, ebenso wie auf der mondabgewandten Seite. Beide Flutberge sind etwa einen halben Meter hoch. Dazwischen liegen zwei Ebbtäler. Innerhalb eines Tages dreht sich die Erde unter den beiden Flutbergen hindurch.

      Anziehungskraft und Fliehkraft bestimmen die Gezeiten

      Verantwortlich für die Entstehung von Ebbe und Flut sind zwei Kräfte: die Gravitationskräfte des Mondes und die Fliehkraft. Beide Kräfte wirken im Zusammenspiel mit dem Erde-Mond-System, das um einen gemeinsamen Schwerpunkt im Inneren der Erdkugel rotiert: Auf der mondzugewandten Seite wirkt die Anziehungskraft des Mondes stärker, auf der abgewandten Seite dominiert die Fliehkraft. Dadurch entstehen auf beiden Seiten der Erde Flutberge.

      Einfluss der Sonne

      Je nach ihrem Stand kann auch die Sonne das Spiel der Gezeiten beeinflussen und die Kraft des Mondes verstärken. Bei Voll- und Neumond wirken Sonne und Mond zusammen: die Folge, es kommt zu starkem Hochwasser, einer so genannten Springtide. Bei Halbmond sind Ebbe und Flut weniger stark ausgeprägt, da die Kräfte von Sonne und Mond in unterschiedliche Richtungen weisen. Dieses Phänomen des „Niedrigwassers“ nennt man Nipptide.

    • Warum wird es jeden Tag hell und jede Nacht dunkel? Und warum sind die Tage bei uns im Sommer länger als im Winter?

    • Betrachtet man den Himmel an einem Sommertag vom Weltall aus, ist er schwarz, das Licht der Sonne gleißend weiß. Von der Erde aus gesehen wirken die Farben anders: Der Himmel ist strahlend blau, die Sonne wirft ein warmes, gelbes Licht.

      Blauer Himmel durch farbiges Licht der Sonne

      Warum der Himmel von der Erde aus betrachtet blau erscheint, liegt an der Beschaffenheit des Sonnenlichtes. Das Licht der Sonne besteht aus einzelnen Lichtstrahlen, die sich wellenartig fortbewegen. Sieht man alle Lichtstrahlen auf einmal, erscheint das Licht weiß. Wird das Licht jedoch abgelenkt, beispielsweise durch ein Prisma, dann werden einzelne Spektralfarben sichtbar wie Rot, Orange, Gelb, Grün, Violett oder Blau. Die Lichtstrahlen der Sonne bestehen somit aus bunten Farben.

      Das Rayleigh-Phänomen erklärt den blauen Himmel

      Auf ihrem Weg zur Erde durchdringen die Sonnenstrahlen die Erdatmosphäre. Diese besteht aus unsichtbaren Gasmolekülen, vor allem aus Stickstoff- und Sauerstoff. Treffen die Lichtstrahlen der Sonne auf diese kleinen Teilchen, werden sie abgelenkt, beziehungsweise gestreut. Da jede Farbe eine andere Wellenlänge hat, ist die Streuung unterschiedlich. Wenn die Sonne hoch am Himmel steht, so ist der Weg, den das Licht durch die Atmosphäre zurücklegen muss, relativ kurz. Es wird vor allem blaues Licht gestreut - der Himmel wirkt blau. Dieses Phänomen wird auch Rayleigh-Streuung genannt. Der Engländer John William Strutt, 3. Baron Rayleigh, entdeckte das physikalische Prinzip, das den blauen Himmel verursacht, im 19. Jahrhundert.

      Rotes Sonnenlicht verursacht Farbe beim Sonnenuntergang

      Zu Sonnenaufgang oder Sonnenuntergang zeigt der Himmel andere Farben als das Blau am Tage. Variationen von Rottönen lösen das Blau ab und auch die tagsüber gelblich wirkende Sonne erscheint rot. Das liegt daran, dass die Sonnenstrahlen morgens oder abends einen längeren Weg durch die Atmosphäre haben, weil die Sonne tiefer steht: Es wird vor allem rotes Licht gestreut. Denn: Die Moleküle fangen nach einer kurzen Strecke das kurzwellige blaue Licht ab; auf der Erde kommen nur noch die langwelligen roten Strahlen an. Dies wird als Sonnenaufgang oder Sonnenuntergang sichtbar.

      Experiment mit Taschenlampe – Sonne und blauer Himmel

      Schüttet man Milch in ein großes durchsichtiges Glas mit Wasser, so kann man die Lichtstreuung des Himmels nachahmen. Die Fettmoleküle der Milch, in der Rolle der Moleküle in der Atmosphäre, streuen das Licht der Taschenlampe. Das Licht erscheint blau, die Lichtquelle erzeugt einen gelblichen Schein wie die Sonne.

    • Ein Bumerang fliegt von selbst wieder zurück – meistens jedenfalls. Wie müssen wir ihn werfen und wie muss er beschaffen sein, damit das klappt? Wir lassen ein extragroßes Exemplar anfertigen, um das Geheimnis des Bumerangs zu lüften.

    • Wie kommt es, dass wir den Mond nicht immer gleich wahrnehmen, dass er sich zum Beispiel manchmal als Neumond, manchmal als Vollmond zeigt? Was haben Sonne und Erde damit zu tun? Das Video erklärt die Zusammenhänge.

    • Der Treibhauseffekt lässt weltweit die Temperatur ansteigen. Aber für Europa könnte der Klimawandel das genaue Gegenteil bringen: eine neue Eiszeit. Schuld ist der Golfstrom.

    • Saugnäpfe kennt jeder - z.B. von der Fußmatte in der Dusche. Ganz klar eine menschliche Erfindung, ein technisches Patent. Oder vielleicht doch nicht?

    • Treibhausgase in der Atmosphäre nehmen zu, die Erde wärmt sich immer mehr auf. Woher kommt das?

    • Ein Jetstream ist ein sehr schneller, bandförmiger Westwindstrom, der Windgeschwindigkeiten von bis zu 500 Kilometern pro Stunde erreichen kann. Sowohl auf der Nord- als auch auf der Südhalbkugel gibt es Westwindströme, insgesamt zwei Jetstreams auf jeder Halbkugel. Die Westwindströmungen auf der Nordhalbkugel beeinflussen maßgeblich unser europäisches Wetter. Flugzeuge aus den USA mit dem Ziel Europa nutzen den starken Rückenwind von West nach Ost regelrecht als „Autobahn“. So können die Fluglinien Zeit und Benzin sparen. Doch wie kommt es zu dem Phänomen des „Jetstreams“, auch als „Strahlstrom“ be-kannt?

      Der Jetstream, starke Winde in großer Höhe

      Starke Westwindströmungen treten in großen Höhen von 10 Kilometern in der Troposphäre auf. Sie entstehen dort, wo kalte und warme Luftzellen aufeinander treffen. Der Westwind-strom an der Berührungsstelle von Polar- und Ferrelzelle heißt Polarfrontjetstream, die starken Winde zwischen Ferrel- und Hadleyzelle nennt man Suptropenjetstream. Unser Wetter in Europa wird am stärksten vom Polarfrontjetstream beeinflusst. Dieser Strahlstrom verläuft zwischen dem 40° und 60° Breitengrad und zählt zur Gruppe der „geostrophischen Winde“. Der Polarfrontjetstream bildet sich infolge globaler Ausgleichsbewegungen zwischen Hoch- und Tiefdruckgebieten. Dabei fließt warme Luft vom Äquator Richtung Nordpol, die durch die Erdrotation nach Osten abgelenkt wird.

      Beeinflusst die Windrichtung: die Corioliskraft

      Für die Ablenkung der Winde durch die Erdrotation ist die Corioliskraft verantwortlich. Sie ist nach dem französischen Wissenschaftler Gaspard Gustave de Coriolis benannt, der dieses Phänomen im Jahr 1835 als erster mathematisch untersuchte. Am Äquator dreht sich die Erde mit 1670 Kilometern pro Stunde nach Osten, in Richtung der Pole nimmt die Geschwindigkeit ab. Die Luftmassen, die so vom Äquator zum Nordpol strömen, nehmen den Schwung nach Osten mit und bewegen sich somit schneller als die Erdoberfläche weiter nordwärts. Daher führt die Corioliskraft auf der Nordhalbkugel zu einer Rechtsablenkung der Luftmassen; auf der Südhalbkugel zu einer Linksablenkung. Außerdem gilt: Je näher die Winde an die Pole herankommen, desto stärker ist die Ablenkung. Die Corioliskraft ist somit dafür verantwortlich, dass der Polarfrontjetstream Richtung Osten bläst.

      Verantwortlich für unser Klima in Europa: die Rossby-Wellen des Jetstreams

      In Deutschland kommt der Wind oft aus westlicher Richtung, vom Atlantik her. Er bringt feuchte Luft und sorgt für ein gemäßigtes Klima. Auch das verdanken wir einer Besonderheit des Strahlstroms: Der Jetstream ist kein gleichmäßiges Windband, er mäandert. Dabei entstehen großräumige Wellen in der Atmosphäre - sogenannte Rossby-Wellen -, in denen die Jetstreams sich um die Erde herum bewegen. Je nachdem wie die Wellen verlaufen, bilden sich Hoch- oder Tiefdruckgebiete. Sie wandern mit dem Strahlstrom von Westen nach Osten und beeinflussen unser Wetter in Europa.

    • Eine Welt ohne Telefon, SMS und Messenger-Dienste ist heute kaum noch vorstellbar. Aber wie übermittelte man früher Nachrichten? Berittene Boten wurden eingesetzt und man nutzte optische Signale wie Feuer, Rauch oder Licht, um Informationen weiterzugeben. Ende des 18. Jahrhunderts entwickelte der Franzose Claude Chappe einen optischen Telegraphen, der ganz neue Möglichkeiten eröffnete.

      Claude Chappe und die optische Telegraphie

      Bevor es in den 1840er Jahren möglich wurde, über elektrische Leitungen miteinander zu kommunizieren, wurden eilige Nachrichten von berittenen Boten überbracht. Schon lange davor verständigte man sich mithilfe optischer Signale: Über Fackeltelegraphen, Feuersignalketten, Rauchzeichen oder Spiegel, die das Sonnenlicht reflektierten, wurden Informationen weitergegeben. Diese Methoden waren aber störungsanfällig; längere Nachrichten, die viele Wörter enthielten, konnten so nicht übermittelt werden. Ende des 18. Jahrhunderts entwickelte der Franzose Claude Chappe gemeinsam mit seinen Brüdern eine besonders effektive Methode: die optische Telegraphie.

      Effektive Kommunikation mit visuellen Zeichen

      An einem Mast, der auf einem kleinen Turm oder einem Gebäude aufgestellt wurde, war ein schwenkbarer Querbalken befestigt. An dessen beiden Enden befand sich jeweils ein weiterer kleinerer, schwenkbarer Arm. Mit dieser Konstruktion konnten - über ein System von Seilzügen - je nach Position des Querbalkens und der Arme unterschiedliche visuelle Zeichen eingestellt werden. Diese waren jeweils einer Ziffer, einem Buchstaben, einzelnen Begriffen oder auch ganzen Sätzen zugeordnet. Der Sender verschlüsselte die Nachricht mit einem Zeichencode. Die Zeichen wurden über die Sendemasten eingestellt und als optisches Signal weitergegeben. In der Empfängerstation konnte die Nachricht mithilfe einer Tabelle entschlüsselt werden.

      Über weite Entfernungen verschlüsselt kommunizieren

      Damit die Kommunikation über weite Strecken möglich war, mussten sich die einzelnen Telegraphenstationen entlang einer Telegraphenlinie vom Sender zum Empfänger in Sichtweite befinden. Mit einem guten Fernrohr konnte man die Zeichen noch auf eine Entfernung von bis zu zwölf Kilometern erkennen. So weit waren die Telegraphenstationen auch maximal voneinander entfernt. Am Anfang der Nachrichtenkette stellten die Wärter der Sendestation die Zeichen über die schwenkbaren Arme ein. Diese wurden dann jeweils von den Betreibern der nächsten Station gesichtet und wiederum an die folgende Station weitergegeben.

      Ein Telegraphennetz über das ganze Land

      1792 konnte Claude Chappe die französische Nationalversammlung von seiner Entwicklung überzeugen; die ersten Telegraphenstationen wurden errichtet. Die erste „Telegraphenlinie“, d. h. die erste Anordnung mehrerer solcher Stationen hintereinander, wurde 1794 in Betrieb genommen. Sie bestand aus über 20 Stationen und verband Paris mit der Stadt Lille. Für die Übermittlung einer Botschaft aus 30 Wörtern brauchte man für diese Strecke von etwa 200 Kilometern ungefähr eine Stunde. Mit einem berittenen Boten hätte es einen ganzen Tag gedauert. Anfang des 19. Jahrhunderts entstand in Frankreich ein Netz von Telegraphenlinien, das sich über das ganze Land erstreckte. Es wurde mit über 500 Stationen zum wichtigsten, vor allem auch für militärische Nachrichten genutzten, System der Nachrichtenübertragung.

      Andere Länder, andere Signale

      Auch in Preußen, Schweden, England, Russland und Italien wurden optische Telegraphen zur Nachrichtenübermittlung eingesetzt. Es wurden dabei andere optische Signale verwendet. Statt drei Balken wie im französischen Telegraphennetz, mit denen 192 Einstellungen möglich waren, wurden beim Preußischen Telegraphen sechs Balken verwendet - damit waren 4.096 Einstellungen möglich. In England setzte man statt Balken achteckige drehbare Tafeln ein.

      Die elektrische Telegraphie

      Bevor elektrischer Strom effektiv und über weite Strecken genutzt werden konnte, war der optische Telegraph die schnellste Methode der Nachrichtenübermittlung. Dann erfand der Amerikaner Samuel Morse 1837 den elektrischen Schreibtelegraphen – den Morseapparat. Das Patent darauf meldete er 1840 an. Gegenüber der optischen Nachrichtenübermittlung hatte der elektrische Telegraph viele Vorteile: Zum Beispiel konnte er Tag und Nacht betrieben werden. Die übertragenen Zeichen waren nicht öffentlich sichtbar und konnten so besser geheim gehalten werden. Die optischen Telegraphenstationen wurden in der Folge nach und nach aufgegeben.

    • Können wir Töne unter Wasser hören? Pflanzt sich der Schall dort genauso fort wie in der Luft? Ein Versuch auf dem Meer soll Klarheit bringen. Wir lassen einen Lautsprecher ins Wasser, der einen Ton sendet und ein Mikrofon, das diesen Ton empfangen soll. Der Abstand zwischen beiden beträgt mehr als einen Kilometer. Mal hören, was passiert!

    • Der Wattwurm ist das „heimliche Wappentier“ des Wattenmeeres. Bei einem Experiment im Versuchslabor zeigt er, was er mit dem Wattboden macht und warum er so wichtig für das Ökosystem Wattenmeer ist.

    • Wir wollen wissen, was die Luft aus einem Klassenzimmer wiegt. Wir sammeln die Luft in Plastiktüten ein und versuchen sie zu wiegen. Doch das geht schief. Vielleicht klappt es, wenn wir die Luft komprimieren?

      Schlagworte: Gewicht, Luft, Luftdruck
    • Wasserdruck hat enorme Kräfte. Wir testen die Kraft des Wassers mit einem Motorrad, das dem Druck von 10 000 Meter Tiefe ausgesetzt wird.

    • Die Sonne verwöhnt die Erde mit Licht und Wärme, schickt uns mehr Energie, als wir überhaupt benötigen. Jetzt muss man die Sonnenwärme nur noch einfangen und daraus Strom erzeugen.

    • Das „Mer de Glace“ ist der größte Gletscher Frankreichs und ein beliebtes Ziel für Touristen. Gletscher faszinieren die Menschen schon seit jeher. Aber wie entstehen die imposanten Eisgiganten eigentlich? Und wieso sind sie ständig in Bewegung?

      Schlagworte: Eis, Frankreich, Gletscher
    • Ohne unsere Knie geht gar nichts. Denn nur sie ermöglichen uns das Beugen und Strecken der Beine, eine Grundvoraussetzung des Laufens. In der Werkstatt baut der Schreiner ein Holzmodell des Knies. Und entdeckt dabei, dass das wertvolle Gelenk sehr viel mehr ist, als nur die Verbindung von Ober- und Unterschenkel.

    • Die Hüfte ist ständig im Einsatz. Besonders beim Tanzen wird ihr einiges abverlangt. Das Hüftgelenk muss sich drehen, beugen, wenden und darf dabei nicht kaputt gehen. Um zu sehen, wie dieses Wunderwerk genau funktioniert, baut die Schreinerin ein hölzernes Hüftgelenk und zeigt, wie die einzelnen Bestandteile ineinandergreifen.

    • Ein Schmied braucht kräftige Schultern, sonst kann er seine Arbeit nicht verrichten. Um zu verstehen, wie das Schultergelenk arbeitet, wird in der Schmiede ein metallenes Schultergelenk konstruiert. Funktionieren kann das Schultergelenk nur, wenn alle Elemente gut verbunden sind und perfekt ineinandergreifen.

    • Schall braucht ein Medium, um sich auszubreiten. Üblicherweise ist das Luft - aber wie genau funktioniert das eigentlich? Und was passiert im Vakuum? Das erklären die Wissenschafts-Comedians.

    • Kann eine Drehung allein durch Gewichtsverlagerung beeinflusst werden? Wir schicken vier Artisten in die Arena. Wird sich die Drehung eines großen Rads beschleunigen, wenn die Artisten von außen ins Innere des Rades klettern?

    • Wo heute der Rhein durch die Ebene zwischen Schwarzwald und Vogesen fließt, rumorte es vor 65 Millionen Jahren gewaltig in der Erde. Es war der Beginn eines spannenden geologischen Prozesses, durch den der Oberrheingraben entstand. Was ging da genau vor sich?

    • Wenn ein Blitz am Himmel zu sehen ist, sind meist auch Donner und Regen nicht weit - ein Gewitter ist im Anzug. Wie kommt es zu Blitz und Donner? Warum regnet es? Eine Animation zeigt die physikalischen Zusammenhänge.

    • Tropische Wirbelstürme entstehen über den Ozeanen durch die Verdunstung von warmem Meereswasser mithilfe der Corioliskraft. Sie erreichen Windgeschwindigkeiten von bis zu 250 Kilometer pro Stunde und verursachen nicht selten Überschwemmungen und Sturmfluten.

      Tropische Wirbelstürme bilden sich über den Ozeanen

      Ob Hurrikan, Taifun oder Zyklon – eines haben tropische Wirbelstürme trotz ihrer unterschiedlichen Bezeichnung in den verschiedenen Erdteilen gemeinsam: Die Stürme entstehen im Bereich der Tropen über den Ozeanen. Dabei verdunstet Meerwasser, so dass feuchtwarme Luft schnell nach oben steigen kann. Heftige Wirbelstürme können Schäden in Millionenhöhe verursachen und fordern mit ihrer gewaltigen Zerstörungskraft nicht selten viele Todesopfer, vor allem in den tropischen Küstenregionen.

      Tropische Wirbelstürme sind abhängig von Wassertemperatur und Corioliskraft

      Tropische Wirbelstürme können nur unter ganz bestimmten Bedingungen entstehen. Dazu muss die Temperatur der Meeresoberfläche mindestens 27 Grad Celsius betragen und die Corioliskraft mitwirken. Die Corioliskraft wird durch die Drehung der Erde erzeugt und lenkt die Luftmassen ab: auf der Nordhalbkugel nach rechts, also nach Osten, auf der Südhalbkugel nach links, also nach Westen. Treffen diese Faktoren - warmes Meerwasser und Corioliskraft - zusammen, kann daraus bei bestimmten Bedingungen ein Wirbelsturm entstehen. Das funktioniert aber nur innerhalb der tropischen Zone auf beiden Erdhalbkugeln - zwischen dem 5. und dem 20. Breitengrad. Am Äquator selbst sind die Ozeane zwar warm genug, aber die Corioliskraft fehlt. An den Polen ist es umgekehrt: Hier ist die Corioliskraft stark, jedoch das Meerwasser zu kalt.

      Wirbelstürme entstehen durch Verdunstungen an der Meeresoberfläche

      Ein tropischer Wirbelsturm entsteht immer gleich: Zunächst verdunstet Wasser an der Meeresoberfläche, die feuchtwarme Luft steigt auf und kondensiert in der Höhe. Durch die Kondensation entstehen Cumulus-Wolken, die mit ihrer Verdunstungswärme Energie für den Sturm liefern. Die Folge: Die Windgeschwindigkeit nimmt zu, es entstehen Gewitterwolken, die ringförmig angeordnet sind und durch die Corioliskraft zu rotieren beginnen. Diese spiralförmige Form eines Wirbelsturms bezeichnet man auch als Augenwall (eyewall) – hier treten die höchsten Windgeschwindigkeiten und die stärksten Niederschläge auf. Die sich drehenden Luftmassen können bis zu 250 Kilometer pro Stunde erreichen. Im Zentrum des Sturms, im sogenannten Auge (eye), ist es dagegen nahezu windstill. Hier herrscht ein Unterdruck, durch den feuchtwarme Meeresluft nachgesaugt wird. Diese steigt spiralförmig in den Eyewall und liefert weitere Energie für Wirbelsturm.

      Folgen tropischer Wirbelstürme

      Tropische Wirbelstürme entfalten bei zunehmender Stärke zerstörerische Kräfte. Auf See sorgen sie für hohen Seegang und gefährden die Schifffahrt. An Land zerstören Hurrikane, Taifune und Co. mit ihren enormen Windgeschwindigkeiten Gebäude, Straßen, Häfen. Hinzu kommen oft Schäden durch Starkregen, Überschwemmungen und Sturmfluten an den Küsten. Zum Glück besteht heutzutage mithilfe von Wettersatelliten und modernster Technik die Möglichkeit, tropische Wirbelstürme und ihren Zugweg genau zu bestimmen und die Bevölkerung rechtzeitig zu warnen.

    • Wie entstehen Regen und Hagel und welche verschiedenen Arten von Regen gibt es bei uns in Mitteleuropa?

    • Mit Hilfe eines mit Luft gefüllten Ballons kann man nachvollziehen, wie Wind entsteht. Öffnet man den Verschluss des Ballons, strömt die Luft nach außen und kann ein Windrad in Bewegung setzen. Aber was geschieht da genau?

    • Ein Kind im Mutterleib ist eingeschlossen in einer Wasserblase. Wie kommt es dort an Sauerstoff und Nahrung? Die Natur hat für ein ausgeklügeltes Versorgungssystem gesorgt.

    • Welchen Gesetzen folgen fallende Kugeln? Unser Team beobachtet das Verhalten verschiedener Kugeln und beschließt, mit den gewonnenen Erkenntnissen einen Großversuch zu starten.

    • Erdöl - ein wichtiger Rohstoff und Energieträger. Immer neue Bohrungen sind nötig, damit der Nachschub nicht abreißt. Aber zuerst muss ein Ölkonzern wissen, wo es sich zu bohren lohnt.

    • Wir planen einen ganz großen Wurf. Von einem fahrenden Lastwagen aus, schleudern wir mit einer Wurfmaschine einen Ball senkrecht und sehr hoch in die Luft. Wird der Ball wieder auf den fahrenden Lastwagen zurückfallen?

    • Zwei Parabolspiegel stehen sich gegenüber. Die Verbindung zwischen den Spiegeln folgt festen Gesetzen. Wie funktioniert die Übertragung von Licht- und Schallwellen?

    • Süß oder salzig? Lecker oder nicht? Die Zunge ist unser "Vorkoster" und prüft, ob Speisen genießbar sind.

    • Computertomographen ermöglichen Ärzten dreidimensionale Blicke ins Innere des Körpers. Dahinter stecken ausgeklügelte Röntgentechnik und clevere Computerprogramme.

    • Die Wärme aus der Erde könnte eine Alternative zu fossilen Rohstoffen sein, denn diese werden knapper und teurer und verschärfen durch die Abgase den Treibhauseffekt. Geothermiekraftwerke nutzen heißes Wasser aus tief gelegenen Gesteinsschichten und erzeugen damit elektrischen Strom. Sie arbeiten nach dem Prinzip der Kraft-Wärme-Kopplung, d.h. sie produzieren Strom und heizen auch per Fernwärme. Wie das genau geht, zeigt der Film mithilfe einer Animation.

    • Sprengstoff und Waffen gehören nicht ins Reisegepäck - und der Gepäckscanner ertappt jeden, der es trotzdem versucht. Taschen und Koffer werden dank Röntgenstrahlen zur gläsernen Box.

    • Im Atomkraftwerk wird Strom durch Kernspaltung erzeugt. Durch die Spaltung des Urans wird Wasser aufgeheizt und Wasserdampf gewonnen. Der Wasserdampf treibt wiederum eine Turbine an, die an einen Generator gekoppelt ist; dieser Generator erzeugt den Strom im Kernkraftwerk.

      Ein Atomkraftwerk erzeugt Strom mit radioaktivem Uran

      Der Rohstoff für die Kernspaltung ist Uran, ein radioaktives Schwermetall. Uran wird aus Uranerz gewonnen und in Brennstofftabletten gepresst. Diese Tabletten, auch Pellets genannt, enthalten rund fünf Prozent Uran 235. Zwei der Pellets reichen aus, damit ein 4-Personen-Haushalt ein Jahr lang mit Strom versorgt werden kann. Die Brennstofftabletten im Kernkraftwerk werden in Metallrohre, in sogenannte Brennstäbe, eingeschlossen und kommen als solche in ein dickwandiges Reaktordruckgefäß, wo die Brennstäbe von Wasser umspült werden. Der Kernbrennstoff ist damit einsatzbereit.

      Im Reaktor: Kernspaltung durch Neutronen

      Jedes Atomkraftwerk besitzt einen nuklearen und einen konventionellen Teil zur Stromerzeugung. Im ersten Teil, im Reaktor, wird Wärme erzeugt und Wasser durch Kernspaltung erhitzt. Es entsteht Wasserdampf. Doch wie läuft die Kernspaltung ab? Der Urankern besteht aus Neutronen und Protonen. Trifft ein zusätzliches Neutron auf diesen Atomkern, wird dieser instabil und spaltet sich auf. Bei dem Spaltungsprozess entstehen Wärme und zusätzlich zwei bis drei weitere Neutronen: Diese lösen, verlangsamt durch Wasser, weitere Spaltungen aus: Es kommt zu einer Kettenreaktion, die von dem Reaktorfahrer, also der Zentrale des Kernkraftwerks, exakt gesteuert und kontrolliert werden kann. Das geschieht, indem die Steuerstäbe mehr oder weniger in den Reaktor eingefahren werden.

      Kernkraftwerk: Stromgewinnung durch Wasserdampf und Wärme

      In einem Druckwasserreaktor, wie hier im Film dargestellt, gelangt das erhitzte Wasser vom Reaktor zu einem Dampferzeuger, wo die Wärme in einen Sekundärkreislauf abgegeben wird. Dieser ist von dem nuklearen Kreislauf abgekoppelt, damit das Wasser im zweiten Kreislauf nicht radioaktiv belastet wird. In diesem Sekundärkreislauf verdampft das Wasser; der Wasserdampf wird an eine Turbine weitergeleitet, die wiederum an einen Generator gekoppelt ist. Im Generator wird schließlich Strom erzeugt, der in die Hochspannungsnetze zur Stromversorgung eingespeist wird. Es gibt aber auch noch einen anderen Kernkraftwerkstyp, den Siedewasserreaktor. Der Unterschied zum Druckwasserreaktor ist, dass der Wasserdampf im Siedewasserreaktor noch radioaktive Stoffe enthält, da dort nur ein Kreislauf für die Wärmeübertragung zuständig ist.

    • Ein Sonnenkollektor wandelt Sonnenstrahlung in Wärmeenergie um. Sonnenkollektoren sind oft auf den Dächern von Privathaushalten installiert. Mit ihrer Hilfe kann man Wasser er-wärmen oder Heizenergie gewinnen. Solarenergie zählt zu den erneuerbaren Energien und leistet damit einen wichtigen Beitrag für Ökologie und Umwelt.

      Sammelt Sonnenlicht – der Sonnenkollektor

      Doch wie funktioniert ein Sonnenkollektor? Treffen Lichtstrahlen auf einen Körper, dringen sie in diesen entweder ein oder werden reflektiert. Dabei gilt Folgendes: Ein heller Körper reflektiert viel und schluckt wenig Sonnenlicht; ein dunkler Körper reflektiert wenig, absor-biert aber mehr Sonnenstrahlen. Dieses Prinzip macht sich der Sonnenkollektor bei der Wärmegewinnung zu Nutze.

      Wärmeenergie durch Absorber

      Für die private Energiegewinnung werden vor allem Flachkollektoren verwendet. Diese Son-nenkollektoren bestehen aus zwei Schichten: Eine Glasscheibe oben und unten ein Absorber mit einer schwarzen Metallschicht. Darunter fließt Wasser als Wärmeträger. Treffen die Sonnenstrahlen durch die Glasscheibe auf die untere schwarze Schicht, wird beinahe der gesamte Spektralbereich des Lichtes geschluckt. Dabei erwärmen sich der Absorber und das darunter fließende Wasser. Der Absorber ist der wichtigste Bestandteil des Sonnenkollektors.

      Heißes Wasser und Wärme dank Sonnenenergie

      Das hört sich einfach an, hat jedoch einen Haken. Das schwarze Material schluckt viel Strah-lung, strahlt dabei aber auch wieder viel Wärme ab. Um diesen Energieverlust zu reduzieren, besitzt der Solarabsorber eine raffinierte Deckschicht aus besonderem Material. Damit ist der Sonnenkollektor allseitig wärmegedämmt und strahlt nur noch 5 Prozent der Energie wieder ab. Das Ergebnis: Das darunter fließende Wasser erreicht eine Temperatur von 60 bis 80 Grad! In gut gedämmten Leitungen fließt das warme Wasser in einen mit Schaumstoff isolierten Wassertank. Bei Bedarf kann das Brauchwasser aus diesem Wärmespeicher - zumindest in den Sommermonaten – jederzeit für eine warme Dusche genutzt werden.

      Der Umwelt zuliebe: Solarthermie

      Das Prinzip der Solarthermie ist bereits seit der Antike bekannt. Schon der Grieche Archime-des von Syrakus erkannte die Bedeutung von Brenn- und Hohlspiegeln. Der Legende nach soll er mit einem Solar-Spiegel die Flottenverbände der Römer in Brand gesetzt haben – oder zumindest die olympische Fackel. Erst im 18. Jahrhundert erfand der Schweizer Horace-Bénédict de Saussure den Vorläufer heutiger Solarkollektoren. Doch erst mit der Ölkrise in den 70er Jahren des letzten Jahrhunderts begannen Politiker die Solarenergie als ernstzu-nehmende Alternative für herkömmliche Energien zu fördern.

    • Wie auf der Straße, so muss auch auf dem Meer der Verkehr geregelt werden, damit es keine Unfälle gibt. Dazu wird Radar eingesetzt. Aber wie sieht so ein Radargerät aus und was „macht“ es genau?

    • In unserer immer mobiler werdenden Gesellschaft ist Erdöl ein wertvoller Rohstoff, denn aus Erdöl können wir Kraftstoffe für Autos gewinnen. Aber wie lassen sich Benzin und Diesel aus Rohöl - einem Stoffgemisch aus über 500 Komponenten - überhaupt isolieren?

    • Mit der Erfindung der Dampfmaschine begann das Industriezeitalter: Immer mehr Fabriken entstanden, die Arbeitsabläufe wurden neu strukturiert. Alltag und Arbeitsleben der Menschen veränderten sich grundlegend.

      Das vorindustrielle Zeitalter

      Bevor es Dampfmaschinen gab, richteten sich die Menschen nach dem Rhythmus der Natur. Bei der Arbeit waren sie auf ihre eigene Muskelkraft angewiesen oder auf die ihrer Nutztiere. Auch Wind- und Wasserkraft wurden genutzt. Dann wurde die Dampfmaschine erfunden.

      Energie durch heißen Dampf

      Die Geschichte der Dampfmaschine begann im Bergbau. In den Gängen und Schächten, die von den Bergleuten ins Erdinnere gegraben wurden, sammelte sich Wasser. Das musste wieder raus. Diese Arbeit erledigten bis ins 16. Jahrhundert sogenannte Wasserknechte, die das Grubenwasser mit Eimern und anderen Behältern abschöpften und nach oben transportierten. Viel effektiver waren Wasserhebe- und Pumpsysteme, die nach und nach aufkamen und mit Pferdestärke oder Wasserkraft angetrieben wurden. Ab Mitte des 17. Jahrhunderts wurden Pumpsysteme eingesetzt, die mit heißem Dampf angetrieben wurden. Die Maschinen wandelten die im Dampf enthaltene Wärme- und Druckenergie durch einen beweglichen Kolben in Bewegungsenergie um.

      Thomas Newcomens Methode

      Der englische Erfinder Thomas Newcomen entwickelte eine Methode, mit der man durch Wassereinspritzung den heißen Wasserdampf im Zylinder der Dampfmaschine schneller zum Kondensieren bringen konnte. Dadurch wurde im Antriebssystem auch schneller der gewünschte Unterdruck erzeugt, der für die Bewegung des Kolbens erforderlich war. Mit Newcomens Methode konnte die Taktfrequenz der Kolbenbewegung - und damit der Wirkungsgrad der Maschine - erhöht werden. 1712 kam eine solche Dampfmaschine erstmals in einem Kohlebergwerk zum Einsatz.

      James Watts effiziente Dampfmaschine

      Der schottische Erfinder James Watt fand heraus, wie der Wirkungsgrad der Newcomen-Dampfmaschine verbessert werden konnte. Dazu ließ er die Kondensation durch Wassereinspritzung abgetrennt vom Arbeits-Zylinder in einem Kondensator ablaufen. Die erste Dampfmaschine nach dem Watt‘schen Prinzip kam 1776 zum Einsatz. In den folgenden Jahren gelangen Watt weitere Verbesserungen. So entwickelte er eine Methode, mit der der Kolben von beiden Seiten durch Wasserdampf in Bewegung gebracht wurde. Diese Art Dampfmaschine war so effizient, dass allein mit ihrer Kraft viele andere Maschinen in Gang gesetzt werden konnten. Zum Beispiel Spinn- und Webmaschinen in der Textilindustrie.

      Die Industrialisierung

      Nicht nur in England, überall in Europa wurden zu Beginn des 19. Jahrhunderts riesige Fabrikanlagen gebaut, in denen die leistungsfähigen Maschinen zum Einsatz kamen. Über ein ausgeklügeltes Riemensystem konnten die Dampfmaschinen alle anderen Maschinen antreiben. Sie ermöglichten Massenproduktion bei gleichbleibender Qualität. Dampflokomotiven boten neue Möglichkeiten für den Transport von Personen und Gütern: Mit hohen Geschwindigkeiten brachten sie Menschen, Rohstoffe und Waren ans Ziel. Auch Schiffe wurden mit Dampfkraft angetrieben.

      Schichtarbeit in den Fabriken

      Mit dem Einsatz von Maschinen in den Fabriken veränderten sich die Arbeitsabläufe und Arbeitsbedingungen der Menschen radikal. Die Arbeitsabläufe wurden unterteilt; das oft monotone Bedienen von Maschinen wurde zur zentralen Aufgabe der Fabrikarbeiter. Sie mussten nun in Schichten arbeiteten, denn die Maschinen liefen rund um die Uhr. Sozial waren sie häufig kaum abgesichert, ihre Löhne waren niedrig und Arbeitszeiten von zwölf Stunden waren keine Seltenheit.

    • Vor 200 Jahren war der Rhein ein wilder, reißender Fluss. Ihn zu zähmen, war Anfang des 19. Jahrhunderts die große Vision des Karlsruher Ingenieurs Johann Gottfried Tulla. Aber wie konnte ein Mammutprojekt wie die „Rheinbegradigung“ damals überhaupt gelingen?

    • Eine Schatzkiste liegt am Grund eines Schwimmbeckens. Unsere Leute wollen sie bergen. Als Hilfsmittel haben sie nur ein mit Luft gefülltes Kissen zur Verfügung. Kann die Auftriebskraft ihnen vielleicht helfen?

      Schlagworte: Auftrieb, Kraft, Luft, Wasser
    • Grillen und Heuschrecken zirpen. Sie verständigen sich also mit Schall, dabei haben sie gar keine Ohren am Kopf. Was ist ihr Geheimnis?

    • Wir wollen wissen: Verändern sich Töne, wenn sie beschleunigt werden – wenn die Tonquelle also zum Beispiel in einem Flugzeug mitfliegt? Oder ist das eine Frage des Standorts? Unser Team gibt alles, um diese bewegende Frage zu beantworten.

    • Die Erde besteht aus verschiedenen Schichten: aus Erdkruste, Erdmantel, äußerem und innerem Erdkern. Wie dick diese Erdschichten sind, woraus sie bestehen und welche Temperaturen in diesen Schichten herrschen, zeigt eine Animation.

    • Elektrostatische Ladung und Toner sind entscheidend, damit ein Kopierer kopieren kann. Ob wir elektrostatische Ladung selbst erzeugen und damit ein Poster drucken können?

    • Sie sind wahre Haftkünstler und gehen glatte Wände hoch - Geckos. Ihr Geheimnis liegt in den Zehen und ist nur mit dem Mikroskop sichtbar.

    • Grenzen der konventionellen Landwirtschaft

      Für die konventionelle Landwirtschaft ist die intensive Nutzung der Böden durch Monokulturen und den Einsatz von Chemie problematisch. Dort, wo moderne Landwirtschaft auf hohe Erträge setzt, sind die Äcker oft ausgelaugt und vertrocknet, das Gleichgewicht der Böden ist zerstört. Die Folge: Die Landwirte setzen immer mehr Pflanzenschutzmittel und Dünger ein, damit die Erträge einigermaßen stabil bleiben. Dadurch verliert der für die Böden so wichtige Humus mit zahlreichen Mikroorganismen und Kleinstlebewesen kontinuierlich an Nährstoffen. Kommen zu den vorhandenen Problemen noch klimatische Schwankungen, beispielsweise lange Trockenperioden, dörren die Böden weiter aus, sind anfälliger für Schädlinge und weniger fruchtbar. Ein Teufelskreis.

      Naturverträglich: Komposttee

      Einige Landwirte machen sich Gedanken, wie man diesen Kreislauf durchbrechen und naturverträglicher wirtschaften kann. Landwirt Michael Reber aus Baden-Württemberg setzt zum Beispiel auf Komposttee. Auch seine Ackerböden sind durch den jahrelangen Einsatz von Pestiziden und synthetischen Düngemitteln ausgedorrt. Der Komposttee ist ein natürlicher Dünger, eine spezielle Mixtur aus Wasser, Kompost und anderen organischen Stoffen. In der Flüssigkeit vermehren sich wichtige Mikroorganismen, die die Pflanzen nicht nur schützen, sondern auch bei ihrer Aufnahme von Nährstoffen unterstützen. Bringt man den Komposttee auf den Äckern aus, regeneriert sich der Boden, Kleinstlebewesen siedeln sich wieder an. Tausendfüßler, Milben, Regenwürmer und anderes Getier sorgen - genauso wie Bakterien, Pilze und Mikroorganismen - dafür, dass der Boden gesund bleibt. Denn in einem humusreichen Boden, können Pflanzen viel besser mit Wasser und Nährstoffen versorgt werden.

      Günstig und self-made

      Der Komposttee hat auch noch weitere Vorteile: Landwirte wie Michael Reber können den biologischen Dünger selbst herstellen und in der Folge den Bodenlebewesen die Arbeit überlassen. Werden diese regelmäßig mit wertvollem Komposttee auf den Anbauflächen gefüttert, sorgen sie von allein dafür, dass der Boden gestärkt wird. Außerdem ist der Komposttee nicht nur eine natürliche, sondern auch eine preiswerte Lösung im Vergleich zu teuren Pflanzenschutzmitteln und Kunstdüngern.

    • Der Rhein entspringt bekanntlich in den Alpen, fließt in den Bodensee, durch diesen hindurch und auf der anderen Seite, bei Stein am Rhein, wieder heraus. Aber wie lange braucht das Rheinwasser von der Quelle bis zur vollbrachten Seedurchquerung?

      Ein Versuch mit einer Plastikente: Sie wird an der Rheinquelle in den Alpen zu Wasser gelas-sen und auf die Reise geschickt. Verfolgt man die Ente, so müsste man die Zeit stoppen kön-nen, die das Rheinwasser braucht: von der Quelle bis zur Mündung in den Bodensee und durch diesen hindurch bis nach Stein am Rhein, wo der Rhein seinen Weg in Richtung Nor-den fortsetzt. Dafür müsste die Plastikente allerdings einmal durch den ganzen Bodensee schwimmen. Doch wird sie überhaupt in Stein am Rhein ankommen?

      Rheinbrech: Treffpunkt von Alpenrhein und Bodensee

      Die Quelle des Rheins liegt in den Alpen, im Gotthard-Massiv. Dort entspringen Vorder- und Hinterrhein. Der auf zweieinhalbtausend Meter liegende Toma-See gilt offiziell als Rhein-quelle. Das Wasser fließt viele Kilometer durch die Schweiz, bevor es als Alpenrhein bei Hard in den Bodensee fließt. Diese Stelle, an der Alpenrhein und Bodensee aufeinandertreffen, heißt Rheinbrech.

      Das Wasser des Bodensees ist wärmer als das Rheinwasser

      Doch zurück zum Versuch: Am Rheinbrech strauchelt die Plastikente schon, kurz bevor sie überhaupt den Bodensee erreicht hat. Da es nicht weiter geht, wird die Ente aus dem Was-ser genommen und erst hinter dem See wieder in den Rhein hineingesetzt. Doch welchen Rückschluss lässt das Enten-Experiment auf den Weg des Rheinwassers im Bodensee zu? Strömungsforscher Ulrich Lang erklärt, was dort passiert: Das grautrübe Wasser des Alpen-rheins mischt sich nicht sofort mit dem bläulichen Wasser des Bodensees; es setzt sich ab - deutlich sichtbar anhand einer farblichen Trennlinie. Der Grund dafür ist die unterschiedliche Temperatur. Das Wasser des Alpenrheins ist kälter als das des Bodensees. Außerdem enthält das bräunliche Flusswasser gelöste Schwebeteilchen. Beide zusammen, die niedrige Temperatur und die Sedimentfracht, machen das Wasser des Alpenrheins schwerer als das Oberflächenwasser des Sees.

      Das Rheinwasser fließt nicht durch den Bodensee hindurch

      Die Ente kommt genauso wenig voran wie das Rheinwasser. Der Grund: Das kalte Alpen-rheinwasser füllt den Bodensee nur, die Wassermassen wabern im See und fließen nicht durch diesen hindurch. Daher gibt es praktisch kaum Strömung, erklärt Strömungsforscher Lang. Wie schnell sich das Rheinwasser nach dem Rheinbrech im See weiter bewegt, hängt daher von anderen Faktoren ab: Zum Beispiel vom Wind. Im besten Fall würde die Plastiken-te bei starken Herbstwinden in Richtung Westen rund 21 Tage für die Überquerung des Bo-densees benötigen. Im schlechtesten Fall – wenn der Wind abflaut – könnte sie jahrelang auf dem Bodensee herumirren. Ob die Ente dann jemals die Ausmündung bei Stein am Rhein erreichen würde, bleibt offen. Mit der Plastikente ist die Frage, wie lange der Alpenrhein durch den Bodensee fließt, jedenfalls nicht zu lösen.

    • Wir lassen eine Plastikente den Rhein hinunterschwimmen, um herauszufinden, wie lange das Wasser von der Quelle bis zur Mündung braucht. Eine spannende Reise, denn die Ente muss große Herausforderungen meistern: Das Gefälle des Rheins, die Gestalt des Flussbettes und der Wasserstand sind ganz unterschiedlich - je nachdem., auf welchem Flussabschnitt die Ente unterwegs ist.

    • Welche Möglichkeiten gibt es eigentlich, die Strömungsgeschwindigkeit in einem Fluss zu messen? Unser Team testet verschiedene Methoden und erläutert, wann welche Methode am besten eingesetzt wird.

    • Flaggenschwenker reihen sich auf einer langen Straße auf. Ein Signal ertönt. Jeder hebt seine Flagge genau dann, wenn er dieses Signal hört. Ob sich der Weg des Schalls so verfolgen und die Schallgeschwindigkeit messen lässt?

    • Ein Riesenpendel schwingt durch eine Sporthalle. Eine Bahngeschwindigkeit von 100 Kilometer pro Stunde ist unser Ziel.

    • Auf zugefrorenen schwedischen Seen rasen sie fast lautlos über das Eis, die "Eissegler" - ohne Boot nur mit dem Segel in den Händen. Möglichst hoch sollen ihre Schlittschuhe sein, damit sie ihr Segel optimal in den Wind stellen können.

      Schlagworte: Eis, Eislaufen, Schweden, Sportart
    • Katzen sehen im Dunkeln sehr viel besser als Menschen. Das liegt an einer reflektierenden Schicht im Katzenauge, dem sogenannten „Tapetum Lucidum“. Diese Schicht wirkt wie ein Lichtverstärker und ist der Grund, warum dafür, dass Katzenaugen im Dunkeln aufleuchten.

      In der Dämmerung sehen Katzen mehr als Menschen

      Menschen sehen in der Nacht viel weniger als Katzen. Sie sind auf elektrisches Licht oder Reflektoren an Leitpfosten entlang der Straßen angewiesen. Diese „Katzenaugen“ tragen ihren Namen nicht umsonst: Denn die Augen der Katzen können – im Gegensatz zu den menschlichen Augen – Licht reflektieren und deshalb in der Dunkelheit viel besser sehen. Hinzu kommt, dass Katzen ein größeres Gesichtsfeld als Menschen haben. Die nachtaktiven Tiere nehmen an der Peripherie ihres Gesichtsfeldes mehr wahr, als Menschen dies tun.

      Die Rezeptoren: Zapfen und Stäbchen

      Was passiert, wenn Licht ins Auge fällt? Sowohl bei der Katze als auch beim Menschen trifft das Licht auf die Netzhaut. Diese besteht wiederum aus Millionen winziger Rezeptoren. Es gibt zwei Arten von Rezeptoren: Die Zapfen sind für die Farben zuständig, die lichtempfindli-cheren Stäbchen für die Hell-Dunkel-Wahrnehmung. Wichtige Unterschiede zwischen Katze und Mensch dabei sind: Katzen haben eine deutlich höhere Anzahl von lichtempfindlichen Stäbchen und eine andere Farbwahrnehmung als wir. Bisher gehen Wissenschaftler davon aus, dass Katzen die Welt eher blau-violett und grün-gelb sehen.

      Das „Tapetum Lucidum“

      Der entscheidende Unterschied aber, warum Katzen in der Dämmerung besser sehen als Menschen, ist eine reflektierende Schicht hinter der Netzhaut. Diese Schicht, Fachleute nen-nen sie „Tapetum Lucidum“, wirkt wie ein Lichtverstärker. Fällt das Licht ins Katzenauge, so wird es wie von einem Spiegel noch einmal auf die Rezeptoren zurückgeworfen. Das hilft den Vierbeinern aus wenig Licht sehr viel mehr zu machen. Leuchten Katzenaugen im Dunk-len auf, ist der Grund das „Tapetum Lucidum“. Die schlitzförmig, senkrecht stehenden Pupil-len der Katze ermöglichen darüber hinaus, dass der Vierbeiner einfallendes Licht, auch bei schlechter Beleuchtung, maximal nutzen kann.

    • Eine Stubenfliege zu fangen ist beinahe ein Ding der Unmöglichkeit. Das liegt an ihren Facettenaugen und ihrem flinken Gehirn. Im Gegensatz zum Menschen sieht sie um ein Vielfaches schneller und kann deshalb Gefahren rechtzeitig erkennen.

      Die Facettenaugen der Stubenfliege bewahren sie vor Gefahren

      Jeder kennt die Situation: Eine Stubenfliege schwirrt hartnäckig umher, es ist aber beinahe unmöglich sie mit der Hand zu fangen. Die Fliege ist einfach schneller – und das, obwohl sie im Durchschnitt nur sieben Millimeter groß ist und 20 Tage lang lebt. Von weitem betrachtet, scheint die Stubenfliege, genau wie der Mensch, nur zwei Augen zu haben. Tatsächlich hat sie zwei Facettenaugen, die aber jeweils aus tausenden sechseckigen Einzelaugen bestehen. Jedes Einzelauge hat Sinneszellen, die das Licht aus unterschiedlichen Blickwinkeln verarbeiten. Die Stubenfliege hat sozusagen einen eingebauten Rundumblick, während der Mensch ein begrenztes Gesichtsfeld hat.

      Das Gehirn der Stubenfliege sorgt für eine schnelle Wahrnehmung

      Doch das ist nicht der einzige Grund, warum die Stubenfliege reaktionsschneller ist als der Mensch. Aus Sicht der Fliege bewegen sich die Menschen vier Mal so langsam wie sie selbst und das liegt am flinken Gehirn der Stubenfliege. Die Wege im Fliegengehirn sind kurz, weshalb die kleinen Brummer Gefahren sehr viel schneller wahrnehmen als andere Lebewesen. Wie genau die Stubenfliege sieht, ist allerdings unklar. Sieht sie die Welt als zusammenhängendes Mosaik oder in tausend Einzelbildern? Das ist für die Wissenschaft noch zu erforschen.

      Fernsehen ist für Stubenfliegen wie Zeitlupe

      Bekannt ist jedoch, dass die Stubenfliege ein Vielfaches mehr an Bildern pro Sekunde sieht als der Mensch. Die Fliege kann etwa 200 einzelne Bilder pro Sekunde erkennen; der Mensch dagegen nur rund 18 Bilder. Das macht sich vor allem das Fernsehen zunutze: Ein Film besteht in der Regel aus 25 einzelnen Bildern pro Sekunde, die der Mensch als fließende Bewegungen wahrnimmt. Das Gehirn baut einzelne Bilder, die vom Auge an das Gehirn gesendet werden, zu einer fließenden Abfolge zusammen. Bei der Fliege geht das sehr viel schneller als beim Menschen. Deshalb sieht die Stubenfliege Fernsehen wie in Zeitlupe oder wie ein viel zu langsam ablaufendes Daumenkino.

    • Mit ihren feinen Nasen sind Spürhunde nützliche Verbündete des Menschen im Kampf gegen den Drogenschmuggel.

    • 600 Kugeln, dicht an dicht aufgereiht. Einmal darf der Billardspieler stoßen. Wird es ihm gelingen, seine Stoßenergie bis zur letzten Kugel weiter zu geben?

    • Manche Objekte oder Lebewesen sind so klein, dass selbst eine Lupe nicht mehr ausreicht, um winzigste Details zu erkennen. Da hilft nur ein Mikroskop! Kriminalbiologe Mark Benecke nutzt es zum Beispiel für die Bestimmung von Fliegenlarven. Aber wie genau funktioniert ein Mikroskop?

    • Eine Lupe ist eine geniale Erfindung. Im Alltag ist sie hilfreich, um Kleingedrucktes zu entziffern. Für Kriminalbiologen wie Mark Benecke ist sie außerdem ein wichtiges Werkzeug am Tatort. Aber wie funktioniert eine Lupe?

    • Im Sonnenlicht wirft ein Turm einen Schatten. Einen Tag lang bleiben wir ihm auf den Fersen und dokumentieren, wie er wandert.

    • Ist etwas schmutzig geworden, bekommt man es mit Seife oder Waschpulver schnell wieder sauber. Aber mit welchem Trick schaffen es die waschaktiven Substanzen, ein eben noch verschwitztes und verschmutztes T-Shirt im Handumdrehen in ein blitzsauberes und wohlriechendes Kleidungsstück zu verwandeln?

    • Wir wollen einen Elefanten wiegen, indem wir ihn auf ein Floß bugsieren: Mit dem Dickhäuter verändert sich der Tiefgang des Floßes. Ob sich so sein Gewicht feststellen lässt?

      Schlagworte: Waage, Wasserstand, Wiegen
    • Wasserkraft ist eine der ältesten Energiequellen - und dank Klimawandel und Kernkraft-Ausstieg wieder modern. Stauseen können Energie speichern und auf Knopfdruck Strom liefern.

    • Ein Wassertropfen fällt zu Boden. Ein alltäglicher Vorgang. Aber betrachtet man den Tropfen dabei durch die Linse einer Zeitlupenkamera, bietet er ein Schauspiel von majestätischer Schönheit. Beim Aufprall bildet sich eine Krone aus Wasser. Wie muss sie beschaffen sein, damit sie einem König passt?

      Schlagworte: Milch
    • Laser sind inzwischen alltägliche Geräte geworden. Aber wie genau entsteht in diesen Geräten eigentlich der Laserstrahl? Wir zeigen das physikalische Prinzip und die technische Umsetzung.

      Schlagworte: Elektronen, Laser, Licht
    • Um herauszufinden, wieso Windeln große Mengen Flüssigkeit aufnehmen können und trotzdem trocken bleiben, basteln wir eine Riesenwindel. Wir lassen vier Probanden an den Start gehen. Sie sollen pinkeln, was die Windel hält…

    • In der Antike galt die Erde als Mittelpunkt des Universums. Dieses Weltbild hielt sich über hunderte von Jahren, bis es im Zeitalter der Renaissance durch die Berechnungen genialer Mathematiker ins Wanken kam. Einer von ihnen war Johannes Kepler. Was genau hat er herausgefunden?

    • In unserem Experiment schießen wir einen Ball rückwärts aus einem fahrenden Auto. Ball und Auto haben entgegengesetzt gleiche Geschwindigkeit. Heben sich die Geschwindigkeiten gegenseitig auf? Verharrt der Ball in der Luft? Die Hochgeschwindigkeitskamera wird es zeigen…

F
I
J
K
O
Q
U
V
W
X
Y
Z